Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).
Google Scholar
Dutta, S., Yu, S. M. & Lee, Y. H. Assessment of the contribution of antagonistic secondary metabolites to the antifungal and biocontrol activities of Pseudomonas fluorescens NBC275. Plant Pathol. J. 36, 491–496 (2020).
Google Scholar
Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10, 845 (2019).
Google Scholar
Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424 (2012).
Google Scholar
Wei, G., Kloepper, J. W. & Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum arbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81, 1508–1512 (1991).
Bloemberg, G. V. & Lugtenberg, B. J. J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350 (2001).
Google Scholar
Spadaro, D. & Droby, S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 47, 39–49 (2016).
Google Scholar
Fokkema, N. J., Riphagen, I., Poot, R. J. & De Jong, C. Aphid honeydew. A potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. T. Brit. Mycol. Soc. 81, 355–363 (1983).
Di Francesco, A. & Mari, M. Biological control of postharvest diseases by microbial antagonists: How many mechanisms of action?. Eur. J. Plant Pathol. 145, 711–717 (2016).
Janisiewicz, W. J., Tworkoski, T. J. & Sharer, C. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90, 1196–1200 (2000).
Google Scholar
Bencheqroun, S. K. et al. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1–1): in vitro and in situ evidence for the possible involvement of competition for nutrients. Commun. Agric. Appl. Biol. Sci. 71, 1151–1157 (2006).
Google Scholar
Di Francesco, A., Ugolini, L., D’Aquino, S., Pagnotta, E. & Mari, M. Biological of Monilinia laxa by Aureobasidium pullulans strains: insights on competition for nutrients and space. Int. J. Food Microbiol. 248, 32–38 (2017).
Google Scholar
Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
Google Scholar
Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).
Google Scholar
Carmona-Hernandez, S. et al. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9, 121 (2019).
Google Scholar
Yu, S. M. et al. Suppression of green and blue mold in postharvest mandarin fruit by treatment of Pantoea agglomerans 59–4 and putative mode of action. Plant Pathol. J. 26, 353–359 (2010).
Google Scholar
Yu, S. M. & Lee, Y. H. Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. J. Basic. Microb. 55, 898–906 (2015).
Google Scholar
Chao, M. C., Abel, S., Davis, B. M. & Waldor, M. K. The design and analysis of transposon insertion sequencing experiments. Nat. Rev. Microbiol. 14, 119–128 (2016).
Google Scholar
Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990).
Google Scholar
Kieboom, J., Bruinenberg, R., Keizer-Gunnink, I. & de Bont, J. A. Transposon mutations in the flagella biosynthetic pathway of the solvent-tolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes. FEMS Microbiol. Lett. 198, 117–122 (2001).
Google Scholar
Segura, A., Duque, E., Hurtado, A. & Ramos, J. L. Mutations in genes involved in the flagellar export apparatus of the solvent-tolerant Pseudomonas putida DOT-T1E strain impair motility and lead to hypersensitivity to toluene shocks. J. Bacteriol. 183, 4127–4133 (2001).
Google Scholar
Navarrete, B. et al. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS ONE 14, e0214166 (2019).
Google Scholar
Martínez-García, E., Nikel, P. I., Chavarría, M. & de Lorenzo, V. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ. Microbiol. 16, 291–303 (2014).
Google Scholar
Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).
Google Scholar
Kakembo, D. & Lee, Y. H. Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol. Control 134, 72–81 (2019).
Google Scholar
Yasuda, M. et al. Pseudomonas aeruginosa serA gene is required for bacterial translocation through Caco-2 cell monolayers. PLoS ONE 12, e0169367 (2017).
Google Scholar
Liu, R. & Ochman, H. Stepwise formation of the bacterial flagellar system. Proc. Natl. Acad. Sci. USA 104, 7116–7121 (2007).
Google Scholar
Compant, S., Duffy, B., Nowak, J., Clement, C. & Barka, E. A. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005).
Google Scholar
Legein, M. et al. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 11, 1619 (2020).
Google Scholar
Hernandez-Montiel, L. G. et al. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol. Technol. 139, 31–37 (2018).
Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–904 (2005).
Google Scholar
Giacomucci, S., Cros, C.D.-N., Perron, X., Mathieu-Denoncourt, A. & Duperthuy, M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS ONE 14, e0221431 (2019).
Google Scholar
Kobayashi, K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J. Bacteriol. 189, 4920–4931 (2007).
Google Scholar
Harrison, J. J. et al. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 16, e1008848 (2020).
Google Scholar
Bren, A., Hart, Y., Dekel, E., Koster, D. & Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 7, 27 (2013).
Google Scholar
Filonow, A. B. Role of competition for sugars by yeast in the biocontrol of gray mold of apple. Biocontrol Sci. Technol. 8, 243–256 (1998).
Wang, J. et al. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl. Microbiol. Biotechnol. 102, 10523–10539 (2018).
Google Scholar
Koirala, S. et al. A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar typhimurium. MBio 5, 1611 (2014).
Latour, X., Corberand, T., Laguerre, G., Allard, F. & Lemanceau, P. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62, 2449–2456 (1996).
Google Scholar
Joshi, H., Dave, R. & Venugopalan, V. P. Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida. PLoS ONE 4, e6065 (2009).
Google Scholar
Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure & function. Annu. Rev. Microbiol. 64, 43–60 (2010).
Google Scholar
Lim, B. TonB-dependent receptors in nitrogen-fixing nodulating bacteria. Microbes Environ. 25, 67–74 (2010).
Google Scholar
Zhao, G. & Winkler, M. E. A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178, 232–239 (1996).
Google Scholar
Peters-Wendisch, P., Netzer, R., Eggeling, L. & Sahm, H. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl. Microbiol. Biotechnol. 60, 437–441 (2002).
Google Scholar
Nunes, C., Usall, J., Teixidó, N., Miró, M. & Viñas, I. Nutritional enhancement of biocontrol activity of Candida sake (CPA-1) against Penicillium expansum on apples and pears. Eur. J. Pl. Pathol. 107, 543–551 (2001).
Google Scholar
Haas, D., Holloway, B. W., Schamböck, A. & Leisinger, T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol. Gen. Genet. 154, 7–22 (1977).
Google Scholar
Sivakumar, et al. Evaluation of INSeq to identify genes essential for Pseudomonas aeruginosa PGPR2 corn root colonization. G3 (Bethesda) 9, 651–661 (2019).
Google Scholar
Simons, M., Permentier, H. P., de Weger, L. A., Wijffelman, C. A. & Lugtenberg, B. J. J. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact. 10, 102–106 (1997).
Google Scholar
Dubern, J. F., Lagendijk, E. L., Lugtenberg, B. J. & Bloemberg, G. V. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J. Bacteriol. 187, 5967–5976 (2005).
Google Scholar
Finka, A., Sharma, S. K. & Goloubinoff, P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2, 29 (2015).
Google Scholar
Genevaux, P., Georgopoulos, C. & Kelley, W. L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840–857 (2007).
Google Scholar
Anglès, F. et al. Multilevel interaction of the DnaK/DnaJ (HSP70/HSP40) stress-responsive chaperone machine with the central metabolism. Sci. Rep. 7, 41341 (2017).
Google Scholar
Jacobs, M. A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).
Google Scholar
Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D. & de Tosetti, M. I. S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food. Microbiol. 113, 251–257 (2007).
Google Scholar
Gallagher, L. A. et al. Sequence-defined transposon mutant library of Burkholderia thailandensis. MBio 4, e00604-13 (2013).
Google Scholar
O’May, C. & Tufenkji, N. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol. 77, 3061–3067 (2011).
Google Scholar
Hung, N. B., Ramkumar, G. & Lee, Y. H. An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1. Res. Microbiol. 165, 620–629 (2014).
Google Scholar

