Preloader

High-throughput identification of genes influencing the competitive ability to obtain nutrients and performance of biocontrol in Pseudomonas putida JBC17

  • 1.

    Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Dutta, S., Yu, S. M. & Lee, Y. H. Assessment of the contribution of antagonistic secondary metabolites to the antifungal and biocontrol activities of Pseudomonas fluorescens NBC275. Plant Pathol. J. 36, 491–496 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10, 845 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50, 403–424 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Wei, G., Kloepper, J. W. & Tuzun, S. Induction of systemic resistance of cucumber to Colletotrichum arbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81, 1508–1512 (1991).

    Google Scholar 

  • 6.

    Bloemberg, G. V. & Lugtenberg, B. J. J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343–350 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Spadaro, D. & Droby, S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 47, 39–49 (2016).

    CAS 

    Google Scholar 

  • 8.

    Fokkema, N. J., Riphagen, I., Poot, R. J. & De Jong, C. Aphid honeydew. A potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. T. Brit. Mycol. Soc. 81, 355–363 (1983).

    Google Scholar 

  • 9.

    Di Francesco, A. & Mari, M. Biological control of postharvest diseases by microbial antagonists: How many mechanisms of action?. Eur. J. Plant Pathol. 145, 711–717 (2016).

    Google Scholar 

  • 10.

    Janisiewicz, W. J., Tworkoski, T. J. & Sharer, C. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90, 1196–1200 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Bencheqroun, S. K. et al. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1–1): in vitro and in situ evidence for the possible involvement of competition for nutrients. Commun. Agric. Appl. Biol. Sci. 71, 1151–1157 (2006).

    PubMed 

    Google Scholar 

  • 12.

    Di Francesco, A., Ugolini, L., D’Aquino, S., Pagnotta, E. & Mari, M. Biological of Monilinia laxa by Aureobasidium pullulans strains: insights on competition for nutrients and space. Int. J. Food Microbiol. 248, 32–38 (2017).

    PubMed 

    Google Scholar 

  • 13.

    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Carmona-Hernandez, S. et al. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9, 121 (2019).

    CAS 

    Google Scholar 

  • 16.

    Yu, S. M. et al. Suppression of green and blue mold in postharvest mandarin fruit by treatment of Pantoea agglomerans 59–4 and putative mode of action. Plant Pathol. J. 26, 353–359 (2010).

    CAS 

    Google Scholar 

  • 17.

    Yu, S. M. & Lee, Y. H. Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. J. Basic. Microb. 55, 898–906 (2015).

    CAS 

    Google Scholar 

  • 18.

    Chao, M. C., Abel, S., Davis, B. M. & Waldor, M. K. The design and analysis of transposon insertion sequencing experiments. Nat. Rev. Microbiol. 14, 119–128 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Kieboom, J., Bruinenberg, R., Keizer-Gunnink, I. & de Bont, J. A. Transposon mutations in the flagella biosynthetic pathway of the solvent-tolerant Pseudomonas putida S12 result in a decreased expression of solvent efflux genes. FEMS Microbiol. Lett. 198, 117–122 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Segura, A., Duque, E., Hurtado, A. & Ramos, J. L. Mutations in genes involved in the flagellar export apparatus of the solvent-tolerant Pseudomonas putida DOT-T1E strain impair motility and lead to hypersensitivity to toluene shocks. J. Bacteriol. 183, 4127–4133 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Navarrete, B. et al. Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS ONE 14, e0214166 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Martínez-García, E., Nikel, P. I., Chavarría, M. & de Lorenzo, V. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ. Microbiol. 16, 291–303 (2014).

    PubMed 

    Google Scholar 

  • 24.

    Martínez-García, E., Nikel, P. I., Aparicio, T. & de Lorenzo, V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13, 159 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Kakembo, D. & Lee, Y. H. Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol. Control 134, 72–81 (2019).

    CAS 

    Google Scholar 

  • 26.

    Yasuda, M. et al. Pseudomonas aeruginosa serA gene is required for bacterial translocation through Caco-2 cell monolayers. PLoS ONE 12, e0169367 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Liu, R. & Ochman, H. Stepwise formation of the bacterial flagellar system. Proc. Natl. Acad. Sci. USA 104, 7116–7121 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Compant, S., Duffy, B., Nowak, J., Clement, C. & Barka, E. A. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Legein, M. et al. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 11, 1619 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Hernandez-Montiel, L. G. et al. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol. Technol. 139, 31–37 (2018).

    Google Scholar 

  • 31.

    Gjermansen, M., Ragas, P., Sternberg, C., Molin, S. & Tolker-Nielsen, T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. 7, 894–904 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Giacomucci, S., Cros, C.D.-N., Perron, X., Mathieu-Denoncourt, A. & Duperthuy, M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS ONE 14, e0221431 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Kobayashi, K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J. Bacteriol. 189, 4920–4931 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Harrison, J. J. et al. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 16, e1008848 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Bren, A., Hart, Y., Dekel, E., Koster, D. & Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 7, 27 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Filonow, A. B. Role of competition for sugars by yeast in the biocontrol of gray mold of apple. Biocontrol Sci. Technol. 8, 243–256 (1998).

    Google Scholar 

  • 37.

    Wang, J. et al. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl. Microbiol. Biotechnol. 102, 10523–10539 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Koirala, S. et al. A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar typhimurium. MBio 5, 1611 (2014).

    Google Scholar 

  • 39.

    Latour, X., Corberand, T., Laguerre, G., Allard, F. & Lemanceau, P. The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62, 2449–2456 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Joshi, H., Dave, R. & Venugopalan, V. P. Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida. PLoS ONE 4, e6065 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure & function. Annu. Rev. Microbiol. 64, 43–60 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lim, B. TonB-dependent receptors in nitrogen-fixing nodulating bacteria. Microbes Environ. 25, 67–74 (2010).

    PubMed 

    Google Scholar 

  • 43.

    Zhao, G. & Winkler, M. E. A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178, 232–239 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Peters-Wendisch, P., Netzer, R., Eggeling, L. & Sahm, H. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Appl. Microbiol. Biotechnol. 60, 437–441 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Nunes, C., Usall, J., Teixidó, N., Miró, M. & Viñas, I. Nutritional enhancement of biocontrol activity of Candida sake (CPA-1) against Penicillium expansum on apples and pears. Eur. J. Pl. Pathol. 107, 543–551 (2001).

    CAS 

    Google Scholar 

  • 46.

    Haas, D., Holloway, B. W., Schamböck, A. & Leisinger, T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol. Gen. Genet. 154, 7–22 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Sivakumar, et al. Evaluation of INSeq to identify genes essential for Pseudomonas aeruginosa PGPR2 corn root colonization. G3 (Bethesda) 9, 651–661 (2019).

    CAS 

    Google Scholar 

  • 48.

    Simons, M., Permentier, H. P., de Weger, L. A., Wijffelman, C. A. & Lugtenberg, B. J. J. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact. 10, 102–106 (1997).

    CAS 

    Google Scholar 

  • 49.

    Dubern, J. F., Lagendijk, E. L., Lugtenberg, B. J. & Bloemberg, G. V. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J. Bacteriol. 187, 5967–5976 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Finka, A., Sharma, S. K. & Goloubinoff, P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front. Mol. Biosci. 2, 29 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Genevaux, P., Georgopoulos, C. & Kelley, W. L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840–857 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Anglès, F. et al. Multilevel interaction of the DnaK/DnaJ (HSP70/HSP40) stress-responsive chaperone machine with the central metabolism. Sci. Rep. 7, 41341 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Jacobs, M. A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Calvo, J., Calvente, V., de Orellano, M. E., Benuzzi, D. & de Tosetti, M. I. S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food. Microbiol. 113, 251–257 (2007).

    PubMed 

    Google Scholar 

  • 55.

    Gallagher, L. A. et al. Sequence-defined transposon mutant library of Burkholderia thailandensis. MBio 4, e00604-13 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    O’May, C. & Tufenkji, N. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol. 77, 3061–3067 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Hung, N. B., Ramkumar, G. & Lee, Y. H. An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1. Res. Microbiol. 165, 620–629 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Source link