Schiraldi, C., La Gatta, A. & De Rosa, M. Biotechnological production and application of hyaluronan. Biopolymers 20, 387–412 (2010).
Khabarov, V. N., Boykov, P. Y. & Selyanin, M. A. Hyaluronic Acid: Production, Properties, Application in Biology and Medicine (Wiley, 2014).
Giammona, G. et al. (Google Patents, 2016).
Bowman, E. N., Hallock, J. D., Throckmorton, T. W. & Azar, F. M. Hyaluronic acid injections for osteoarthritis of the knee: Predictors of successful treatment. Int. Orthop. 42, 733–740 (2018).
Google Scholar
Moreland, L. W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Res. Ther. 5, 54 (2003).
Google Scholar
Passi, A. & Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev. 146, 83–96 (2019).
Google Scholar
Kogan, G., Šoltés, L., Stern, R. & Gemeiner, P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotech. Lett. 29, 17–25 (2007).
Google Scholar
Necas, J., Bartosikova, L., Brauner, P. & Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 53, 397–411 (2008).
Google Scholar
Bychkov, S. & Kuz’mina, S. Biological role of hyaluronic acid (review). Vopr. Med. Khim. 32, 19–32 (1986).
Google Scholar
Gomes, A. M., Netto, J. H., Carvalho, L. S. & Parachin, N. S. Heterologous hyaluronic acid production in Kluyveromyces lactis. Microorganisms 7, 294 (2019).
Google Scholar
Itano, N. et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085–25092 (1999).
Google Scholar
Sze, J. H., Brownlie, J. C. & Love, C. A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 6, 67 (2016).
Google Scholar
Garg, H. & Hales, C. Methods for determination of hyaluronan molecular weight. Chem. Biol. Hyaluronan 14, 41 (2004).
de Oliveira, J. D. et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 15, 119 (2016).
Google Scholar
Saranraj, P. & Naidu, M. Hyaluronic acid production and its applications a review. Int. J. Pharm. Biol. Arch. 4, 853–859 (2013).
DeAngelis, P. Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell. Mol. Life Sci. (CMLS) 56, 670–682 (1999).
Google Scholar
Volpi, N. & Maccari, F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie 85, 619–625 (2003).
Google Scholar
Boeriu, C. G., Springer, J., Kooy, F. K., van den Broek, L. A. & Eggink, G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 5, 2013 (2013).
de Oliveira, J. D. et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 15, 1–19 (2016).
Google Scholar
Saranraj, P. & Naidu, M. Hyaluronic acid production and its applications—A review. Int. J. Pharm. Biol. Arch. 4, 853–859 (2013).
Yao, J., Weng, Y., Dickey, A. & Wang, K. Y. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci. 16, 28549–28565 (2015).
Google Scholar
Xu, J., Towler, M. & Weathers, P. J. Platforms for plant-based protein production. Bioprocess. Plant In Vitro Syst. 2018, 509 (2018).
Google Scholar
Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151–1155 (2000).
Google Scholar
Fischer, R., Stoger, E., Schillberg, S., Christou, P. & Twyman, R. M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158 (2004).
Google Scholar
Naji-Talakar, S. Plant derived biopharmaceuticals: Overview and success of agroinfiltration. Trends Capstone 2, 12 (2017).
Chandra, S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotech. Lett. 34, 407–415 (2012).
Google Scholar
Christey, M. C. & Braun, R. H. Transgenic Plants: Methods and Protocols 47–60 (Springer, 2005).
Daspute, A. A. et al. Agrobacterium rhizogenes-mediated hairy roots transformation as a tool for exploring aluminum-responsive genes function. Future Sci. OA 5, FSO364 (2019).
Hu, Z. B. & Du, M. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48, 121–127 (2006).
Google Scholar
Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014).
Google Scholar
Wongsamuth, R. & Doran, P. M. Production of monoclonal antibodies by tobacco hairy roots. Biotechnol. Bioeng. 54, 401–415 (1997).
Google Scholar
Simcox, P. D., Reid, E. E., Canvin, D. T. & Dennis, D. T. Enzymes of the glycolytic and pentose phosphate pathways in proplastids from the developing endosperm of Ricinus communis L.. Plant Physiol. 59, 1128–1132 (1977).
Google Scholar
Scheller, J. & Conrad, U. Plant-based material, protein and biodegradable plastic. Curr. Opin. Plant Biol. 8, 188–196 (2005).
Google Scholar
Fallacara, A., Baldini, E., Manfredini, S. & Vertuani, S. Hyaluronic acid in the third millennium. Polymers 10, 701 (2018).
Google Scholar
Kim, J. H. et al. Comparative evaluation of the effectiveness of novel hyaluronic acid-polynucleotide complex dermal filler. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Mao, Z., Shin, H.-D. & Chen, R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84, 63 (2009).
Google Scholar
Ma, J. K., Drake, P. M. & Christou, P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794–805 (2003).
Google Scholar
Bosch, D., Castilho, A., Loos, A., Schots, A. & Steinkellner, H. N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19, 5503–5512 (2013).
Google Scholar
Lerouge, P. et al. N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998).
Google Scholar
Agarwal, P., Gautam, T., Singh, A. K. & Burma, P. K. Evaluating the effect of codon optimization on expression of bar gene in transgenic tobacco plants. J. Plant Biochem. Biotechnol. 28, 189–202 (2019).
Google Scholar
Suo, G. et al. Effects of codon modification on human BMP2 gene expression in tobacco plants. Plant Cell Rep. 25, 689–697 (2006).
Google Scholar
Hatamoto, H., Boulter, M., Shirsat, A., Croy, E. & Ellis, J. Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep. 9, 88–92 (1990).
Google Scholar
Peres, L. E., Morgante, P. G., Vecchi, C., Kraus, J. E. & van Sluys, M.-A. Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult. 65, 37–44 (2001).
Google Scholar
Fu, C.-X., Xu, Y.-J., Zhao, D.-X. & Ma, F. S. A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Rep. 24, 750 (2006).
Google Scholar
Giri, A. & Narasu, M. L. Transgenic hairy roots: Recent trends and applications. Biotechnol. Adv. 18, 1–22 (2000).
Google Scholar
Fischer, R. & Schillberg, S. Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins (Wiley, 2004).
Google Scholar
Oueslati, N. et al. CTAB turbidimetric method for assaying hyaluronic acid in complex environments and under cross-linked form. Carbohyd. Polym. 112, 102–108 (2014).
Google Scholar
Chen, Y.-H. & Wang, Q. Establishment of CTAB Turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohyd. Polym. 78, 178–181 (2009).
Google Scholar
Cheng, F., Luozhong, S., Guo, Z., Yu, H. & Stephanopoulos, G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol. J. 12, 1700191 (2017).
Google Scholar
Jin, P., Kang, Z., Yuan, P., Du, G. & Chen, J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng. 35, 21–30 (2016).
Google Scholar
Yoshimura, T., Shibata, N., Hamano, Y. & Yamanaka, K. Heterologous production of hyaluronic acid in an ε-poly-l-lysine producer, Streptomyces albulus. Appl. Environ. Microbiol. 81, 3631–3640 (2015).
Google Scholar
Moghadam, A., Niazi, A., Afsharifar, A. & Taghavi, S. M. Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in Nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE 11, e0159653 (2016).
Google Scholar
DeAngelis, P. L., Papaconstantinou, J. & Weigel, P. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J. Biol. Chem. 268, 14568–14571 (1993).
Google Scholar
Hoshi, H. et al. An engineered hyaluronan synthase characterization of recombinant human hyaluronan synthase 2 expressed in Escherichia coli. J. Biol. Chem. 279, 2341–2349 (2004).
Google Scholar
Widner, B. et al. Hyaluronic acid production in Bacillus subtilis. Appl. Environ. Microbiol. 71, 3747–3752 (2005).
Google Scholar
Yu, H. & Stephanopoulos, G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab. Eng. 10, 24–32 (2008).
Google Scholar
Chien, L. J. & Lee, C. K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 23, 1017–1022 (2007).
Google Scholar
Mao, Z. & Chen, R. R. Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol. Prog. 23, 1038–1042 (2007).
Google Scholar
Sheng, J. et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: A case study of the regulation mechanism of hyaluronic acid polymer. J. Appl. Microbiol. 107, 136–144 (2009).
Google Scholar
Prasad, S. B., Jayaraman, G. & Ramachandran, K. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl. Microbiol. Biotechnol. 86, 273–283 (2010).
Google Scholar
Rakkhumkaew, N., Shibatani, S., Kawasaki, T., Fujie, M. & Yamada, T. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: Cytological studies. Biotechnol. Bioeng. 110, 1174–1179 (2013).
Google Scholar
Jia, Y. et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Biores. Technol. 132, 427–431 (2013).
Google Scholar
Hmar, R. V., Prasad, S. B., Jayaraman, G. & Ramachandran, K. B. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnol. J. 9, 1554–1564 (2014).
Google Scholar
Jeong, E., Shim, W. Y. & Kim, J. H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J. Biotechnol. 185, 28–36 (2014).
Google Scholar
Cheng, F., Gong, Q., Yu, H. & Stephanopoulos, G. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11, 574–584 (2016).
Google Scholar
Westbrook, A. W., Ren, X., Oh, J., Moo-Young, M. & Chou, C. P. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab. Eng. 47, 401–413 (2018).
Google Scholar
Liu, L., Liu, Y., Li, J., Du, G. & Chen, J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Fact. 10, 99 (2011).
Google Scholar
Itano, N. & Kimata, K. Mammalian hyaluronan synthases. IUBMB Life 54, 195–199 (2002).
Google Scholar
Ke, C., Sun, L., Qiao, D., Wang, D. & Zeng, X. Antioxidant acitivity of low molecular weight hyaluronic acid. Food Chem. Toxicol. 49, 2670–2675 (2011).
Google Scholar
Javan, N. B. et al. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. Eur. J. Pharm. Sci. 101, 167–181 (2017).
Google Scholar
Moseley, R., Walker, M., Waddington, R. J. & Chen, W. Comparison of the antioxidant properties of wound dressing materials–Carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials 24, 1549–1557 (2003).
Google Scholar
Badle, S. S., Jayaraman, G. & Ramachandran, K. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Biores. Technol. 163, 222–227 (2014).
Google Scholar
Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).
Google Scholar
Beigmohammadi, M., Sharafi, A. & Jafari, S. An optimized protocol for Agrobacterium rhizogenes-mediated genetic transformation of Citrullus colocynthis. J. Appl. Biotechnol. Rep. 6, 113–117 (2019).
Google Scholar
Gawel, N. & Jarret, R. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262–266 (1991).
Google Scholar
Kanchana, S., Arumugam, M., Giji, S. & Balasubramanian, T. Isolation, characterization and antioxidant activity of hyaluronic acid from marine bivalve mollusc Amussium pleuronectus (Linnaeus, 1758). Bioactive Carbohyd. Diet. Fibre 2, 1–7 (2013).
Google Scholar
Hamad, G., Taha, T., Hafez, E. & El Sohaimy, S. Physicochemical, molecular and functional characteristics of hyaluronic acid as a functional food. Am. J. Food Technol. 12, 72–85 (2017).
Google Scholar

