Preloader

Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2

  • 1.

    Schiraldi, C., La Gatta, A. & De Rosa, M. Biotechnological production and application of hyaluronan. Biopolymers 20, 387–412 (2010).

    Google Scholar 

  • 2.

    Khabarov, V. N., Boykov, P. Y. & Selyanin, M. A. Hyaluronic Acid: Production, Properties, Application in Biology and Medicine (Wiley, 2014).

    Google Scholar 

  • 3.

    Giammona, G. et al. (Google Patents, 2016).

  • 4.

    Bowman, E. N., Hallock, J. D., Throckmorton, T. W. & Azar, F. M. Hyaluronic acid injections for osteoarthritis of the knee: Predictors of successful treatment. Int. Orthop. 42, 733–740 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Moreland, L. W. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Res. Ther. 5, 54 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Passi, A. & Vigetti, D. Hyaluronan as tunable drug delivery system. Adv. Drug Deliv. Rev. 146, 83–96 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Kogan, G., Šoltés, L., Stern, R. & Gemeiner, P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotech. Lett. 29, 17–25 (2007).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Necas, J., Bartosikova, L., Brauner, P. & Kolar, J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 53, 397–411 (2008).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bychkov, S. & Kuz’mina, S. Biological role of hyaluronic acid (review). Vopr. Med. Khim. 32, 19–32 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Gomes, A. M., Netto, J. H., Carvalho, L. S. & Parachin, N. S. Heterologous hyaluronic acid production in Kluyveromyces lactis. Microorganisms 7, 294 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Itano, N. et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085–25092 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Sze, J. H., Brownlie, J. C. & Love, C. A. Biotechnological production of hyaluronic acid: A mini review. 3 Biotech 6, 67 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Garg, H. & Hales, C. Methods for determination of hyaluronan molecular weight. Chem. Biol. Hyaluronan 14, 41 (2004).

    Google Scholar 

  • 14.

    de Oliveira, J. D. et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 15, 119 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Saranraj, P. & Naidu, M. Hyaluronic acid production and its applications a review. Int. J. Pharm. Biol. Arch. 4, 853–859 (2013).

    Google Scholar 

  • 16.

    DeAngelis, P. Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell. Mol. Life Sci. (CMLS) 56, 670–682 (1999).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Volpi, N. & Maccari, F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie 85, 619–625 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Boeriu, C. G., Springer, J., Kooy, F. K., van den Broek, L. A. & Eggink, G. Production methods for hyaluronan. Int. J. Carbohydr. Chem. 5, 2013 (2013).

    Google Scholar 

  • 19.

    de Oliveira, J. D. et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact. 15, 1–19 (2016).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Saranraj, P. & Naidu, M. Hyaluronic acid production and its applications—A review. Int. J. Pharm. Biol. Arch. 4, 853–859 (2013).

    Google Scholar 

  • 21.

    Yao, J., Weng, Y., Dickey, A. & Wang, K. Y. Plants as factories for human pharmaceuticals: Applications and challenges. Int. J. Mol. Sci. 16, 28549–28565 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Xu, J., Towler, M. & Weathers, P. J. Platforms for plant-based protein production. Bioprocess. Plant In Vitro Syst. 2018, 509 (2018).

    Article 

    Google Scholar 

  • 23.

    Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151–1155 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Fischer, R., Stoger, E., Schillberg, S., Christou, P. & Twyman, R. M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Naji-Talakar, S. Plant derived biopharmaceuticals: Overview and success of agroinfiltration. Trends Capstone 2, 12 (2017).

    Google Scholar 

  • 26.

    Chandra, S. Natural plant genetic engineer Agrobacterium rhizogenes: Role of T-DNA in plant secondary metabolism. Biotech. Lett. 34, 407–415 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Christey, M. C. & Braun, R. H. Transgenic Plants: Methods and Protocols 47–60 (Springer, 2005).

  • 28.

    Daspute, A. A. et al. Agrobacterium rhizogenes-mediated hairy roots transformation as a tool for exploring aluminum-responsive genes function. Future Sci. OA 5, FSO364 (2019).

  • 29.

    Hu, Z. B. & Du, M. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48, 121–127 (2006).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Ron, M. et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 166, 455–469 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Wongsamuth, R. & Doran, P. M. Production of monoclonal antibodies by tobacco hairy roots. Biotechnol. Bioeng. 54, 401–415 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Simcox, P. D., Reid, E. E., Canvin, D. T. & Dennis, D. T. Enzymes of the glycolytic and pentose phosphate pathways in proplastids from the developing endosperm of Ricinus communis L.. Plant Physiol. 59, 1128–1132 (1977).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Scheller, J. & Conrad, U. Plant-based material, protein and biodegradable plastic. Curr. Opin. Plant Biol. 8, 188–196 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Fallacara, A., Baldini, E., Manfredini, S. & Vertuani, S. Hyaluronic acid in the third millennium. Polymers 10, 701 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Kim, J. H. et al. Comparative evaluation of the effectiveness of novel hyaluronic acid-polynucleotide complex dermal filler. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Mao, Z., Shin, H.-D. & Chen, R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84, 63 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Ma, J. K., Drake, P. M. & Christou, P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794–805 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Bosch, D., Castilho, A., Loos, A., Schots, A. & Steinkellner, H. N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19, 5503–5512 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Lerouge, P. et al. N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Agarwal, P., Gautam, T., Singh, A. K. & Burma, P. K. Evaluating the effect of codon optimization on expression of bar gene in transgenic tobacco plants. J. Plant Biochem. Biotechnol. 28, 189–202 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Suo, G. et al. Effects of codon modification on human BMP2 gene expression in tobacco plants. Plant Cell Rep. 25, 689–697 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Hatamoto, H., Boulter, M., Shirsat, A., Croy, E. & Ellis, J. Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep. 9, 88–92 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Peres, L. E., Morgante, P. G., Vecchi, C., Kraus, J. E. & van Sluys, M.-A. Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult. 65, 37–44 (2001).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Fu, C.-X., Xu, Y.-J., Zhao, D.-X. & Ma, F. S. A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Rep. 24, 750 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Giri, A. & Narasu, M. L. Transgenic hairy roots: Recent trends and applications. Biotechnol. Adv. 18, 1–22 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Fischer, R. & Schillberg, S. Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins (Wiley, 2004).

    Book 

    Google Scholar 

  • 47.

    Oueslati, N. et al. CTAB turbidimetric method for assaying hyaluronic acid in complex environments and under cross-linked form. Carbohyd. Polym. 112, 102–108 (2014).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Chen, Y.-H. & Wang, Q. Establishment of CTAB Turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohyd. Polym. 78, 178–181 (2009).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Cheng, F., Luozhong, S., Guo, Z., Yu, H. & Stephanopoulos, G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol. J. 12, 1700191 (2017).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Jin, P., Kang, Z., Yuan, P., Du, G. & Chen, J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng. 35, 21–30 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Yoshimura, T., Shibata, N., Hamano, Y. & Yamanaka, K. Heterologous production of hyaluronic acid in an ε-poly-l-lysine producer, Streptomyces albulus. Appl. Environ. Microbiol. 81, 3631–3640 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Moghadam, A., Niazi, A., Afsharifar, A. & Taghavi, S. M. Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in Nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE 11, e0159653 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    DeAngelis, P. L., Papaconstantinou, J. & Weigel, P. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J. Biol. Chem. 268, 14568–14571 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Hoshi, H. et al. An engineered hyaluronan synthase characterization of recombinant human hyaluronan synthase 2 expressed in Escherichia coli. J. Biol. Chem. 279, 2341–2349 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Widner, B. et al. Hyaluronic acid production in Bacillus subtilis. Appl. Environ. Microbiol. 71, 3747–3752 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Yu, H. & Stephanopoulos, G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab. Eng. 10, 24–32 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Chien, L. J. & Lee, C. K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 23, 1017–1022 (2007).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Mao, Z. & Chen, R. R. Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol. Prog. 23, 1038–1042 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Sheng, J. et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: A case study of the regulation mechanism of hyaluronic acid polymer. J. Appl. Microbiol. 107, 136–144 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Prasad, S. B., Jayaraman, G. & Ramachandran, K. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl. Microbiol. Biotechnol. 86, 273–283 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Rakkhumkaew, N., Shibatani, S., Kawasaki, T., Fujie, M. & Yamada, T. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: Cytological studies. Biotechnol. Bioeng. 110, 1174–1179 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Jia, Y. et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Biores. Technol. 132, 427–431 (2013).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Hmar, R. V., Prasad, S. B., Jayaraman, G. & Ramachandran, K. B. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnol. J. 9, 1554–1564 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Jeong, E., Shim, W. Y. & Kim, J. H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J. Biotechnol. 185, 28–36 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Cheng, F., Gong, Q., Yu, H. & Stephanopoulos, G. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11, 574–584 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Westbrook, A. W., Ren, X., Oh, J., Moo-Young, M. & Chou, C. P. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab. Eng. 47, 401–413 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Liu, L., Liu, Y., Li, J., Du, G. & Chen, J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Fact. 10, 99 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Itano, N. & Kimata, K. Mammalian hyaluronan synthases. IUBMB Life 54, 195–199 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Ke, C., Sun, L., Qiao, D., Wang, D. & Zeng, X. Antioxidant acitivity of low molecular weight hyaluronic acid. Food Chem. Toxicol. 49, 2670–2675 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Javan, N. B. et al. Preparation, characterization and in vivo evaluation of a combination delivery system based on hyaluronic acid/jeffamine hydrogel loaded with PHBV/PLGA blend nanoparticles for prolonged delivery of Teriparatide. Eur. J. Pharm. Sci. 101, 167–181 (2017).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Moseley, R., Walker, M., Waddington, R. J. & Chen, W. Comparison of the antioxidant properties of wound dressing materials–Carboxymethylcellulose, hyaluronan benzyl ester and hyaluronan, towards polymorphonuclear leukocyte-derived reactive oxygen species. Biomaterials 24, 1549–1557 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Badle, S. S., Jayaraman, G. & Ramachandran, K. Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. Biores. Technol. 163, 222–227 (2014).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Beigmohammadi, M., Sharafi, A. & Jafari, S. An optimized protocol for Agrobacterium rhizogenes-mediated genetic transformation of Citrullus colocynthis. J. Appl. Biotechnol. Rep. 6, 113–117 (2019).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Gawel, N. & Jarret, R. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262–266 (1991).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Kanchana, S., Arumugam, M., Giji, S. & Balasubramanian, T. Isolation, characterization and antioxidant activity of hyaluronic acid from marine bivalve mollusc Amussium pleuronectus (Linnaeus, 1758). Bioactive Carbohyd. Diet. Fibre 2, 1–7 (2013).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Hamad, G., Taha, T., Hafez, E. & El Sohaimy, S. Physicochemical, molecular and functional characteristics of hyaluronic acid as a functional food. Am. J. Food Technol. 12, 72–85 (2017).

    CAS 
    Article 

    Google Scholar 

  • Source link