Huang, J. et al. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 61, 8565–8572 (2013).
Google Scholar
Zhou, M. et al. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis. 15, 1–10 (2016).
Google Scholar
Dev, K. et al. Dietary lactobacillus acidophilus and mannan-oligosaccharides alter the lipid metabolism and health indices in broiler chickens. Probiot. Antimicrob. Proteins 1, 1–14. https://doi.org/10.1007/s12602-020-09717-9 (2020).
Google Scholar
Al-Khalaifa, H. et al. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 98, 4465–4479 (2019).
Google Scholar
Tu, T., Su, Y., Li, G., Zhang, X. & Tong, H. Expression of lipid metabolism-associated genes in male and female white feather chicken. J. Poult. Sci. 53, 118–123 (2016).
Google Scholar
Zhang, B., Yang, X., Guo, Y. & Long, F. Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal 5, 1909–1915 (2011).
Google Scholar
Yang, X., Zhang, B., Guo, Y., Jiao, P. & Long, F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 89, 254–260 (2010).
Google Scholar
Begum, J., Buyamayum, B., Lingaraju, M. C. & Dev, K. Probiotics: Role in immunomodulation and consequent effects. Lett. Anim. Biol. 01(01), 01–07 (2021).
Saleh, A. A., Paray, B. A. & Dawood, M. A. O. Olive cake meal and Bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals 10, 695. https://doi.org/10.3390/ani10040695 (2020).
Google Scholar
Saleh, A. A., Hayashi, K., Ijiri, D. & Ohtsuka, A. Beneficial effects of Aspergillus awamori in broiler nutrition. World Poult. Sci. J. 70, 857–864 (2014).
Google Scholar
Park, Y. et al. Application of probiotics for the production of safe and high-quality poultry meat. Korean J. Food Sci. 36, 567–576 (2016).
Google Scholar
Maiorano, G. et al. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 96, 511–518 (2017).
Google Scholar
Dev, K. et al. Dietary Mannan-oligosaccharides potentiate the beneficial effects of Bifidobacterium bifidum in broiler chicken. Lett. Appl. Microbiol. 71(5), 520–530 (2020).
Google Scholar
Wang, W. W., Wang, J., Zhang, H. J., Wu, S. G. & Qi, G. H. Supplemental Clostridium butyricum modulates lipid metabolism through shaping gut microbiota and bile acid profile of aged laying hens. Front. Microbiol. 11, 600 (2020).
Google Scholar
Yoo, S. R. et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 21, 2571–2578 (2013).
Google Scholar
Saleh, A. A., Shukry, M., Farrag, F., Soliman, M. M. & Abdel-Moneim, A. M. E. Effect of feeding wet feed or wet feed fermented by bacillus licheniformis on growth performance, histopathology and growth and lipid metabolism marker genes in broiler chickens. Animals 11(1), 83. https://doi.org/10.3390/ani11010083 (2021).
Google Scholar
Bera, I. et al. Soapnut shell powder as immunomodulatory and welfare friendly feed additive in broiler chicken. Indian J. Anim. Sci. 89, 1135–1139 (2019).
Google Scholar
Kannan, M., Karunakaran, R., Balakrishnan, V. & Prabhakar, T. G. Influence of prebiotics supplementation on lipid profile of broilers. Int. J. Poult. Sci. 4, 994–997 (2005).
Google Scholar
Zhang, J. et al. Preventive effect of Lactobacillus plantarum CQPC10 on activated carbon induced constipation in Institute of Cancer Research (ICR) mice. Appl. Sci. 8, 1498 (2018).
Google Scholar
Rather, S. A. et al. Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int. J. Dairy Technol. 67, 509 (2014).
Google Scholar
Ooi, L. G. & Liong, M. T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int. J. Mol. Sci. 11, 2499–2522 (2010).
Google Scholar
Sevane, N. et al. Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLoS ONE 9, e98942 (2014).
Google Scholar
Lu, M. W., Cao, Y., Xiao, J., Song, M. Y. & Ho, C. T. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: A review. Food Funct. 9, 4569–4581 (2018).
Google Scholar
Nelson, D. L. & Cox, M. M. (eds) Lehninger Principles of Biochemistry (Worth Publishers, 2011).
Richards, M. P. et al. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133, 707–715 (2003).
Google Scholar
Zhao, S., Ma, H., Zou, S., Chen, W. & Zhao, R. Hepatic lipogenesis in broiler chickens with different fat deposition during embryonic development. J. Vet. Med. A 54, 1–6 (2007).
Google Scholar
Royan, M., Meng, G. Y., Othman, F., Sazili, A. Q. & Navidshad, B. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits. Int. J. Mol. Sci. 12, 8581–8595 (2011).
Google Scholar
Han, S., Vaziri, N. D., Gollapudi, P., Kwok, V. & Moradi, H. Hepatic fatty acid and cholesterol metabolism in nephrotic syndrome. Am. J. Transl. Res. 5, 246 (2013).
Google Scholar
Weng, H., Endo, K., Li, J., Kito, N. & Iwai, N. Induction of peroxisomes by butyrate-producing probiotics. PLoS ONE 10, e0117851 (2015).
Google Scholar
Proszkowiec-Weglarz, M. & Richards, M. P. Expression and activity of the 5’-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development. Poult. Sci. 88, 178 (2009).
Google Scholar
Basiricò, L. et al. Down-regulation of hepatic ApoB100 expression during hot season in transition dairy cows. Livest. Sci. 137, 49–57 (2011).
Google Scholar
Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117 (2006).
Google Scholar
Zerehdaran, S., Vereijken, A. L., Arendonk, J. V. & Van der Waaij, E. H. Effect of age and housing system on genetic parameters for broiler carcass traits. Poult. Sci. 84, 833–838 (2005).
Google Scholar
de Souza Khatlab, A., Del Vesco, A. P., Gasparino, E. & de Oliveira Neto, A. R. Gender and age effects on the expression of genes related to lipid metabolism in broiler’s liver. Czech J. Anim. Sci. 63, 103–109 (2018).
Google Scholar
Huang, J. B., Zhang, Y., Zhou, Y. B., Wan, X. C. & Zhang, J. S. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J. Anim. Physiol. Anim. Nutr. 99, 719–727 (2015).
Google Scholar
Bogusławska-Tryk, M., Piotrowska, A., Szymeczko, R., Burlikowska, K. & Głowińska, B. Lipid metabolism indices and fatty acids profile in the blood serum of broiler chickens fed a diet with lignocellulose. Braz. J. Poult. Sci. 18, 451–456 (2016).
Google Scholar
Yeon, S. J., Kim, S. K., Kim, J. M., Lee, S. K. & Lee, C. H. Effects of fermented pepper powder on body fat accumulation in mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 77, 2294–2297 (2013).
Google Scholar
Naghi, S. A., Ghasemi, H. A. & Taherpour, K. Evaluation of Aloe vera and symbiotic as antibiotic growth promoter substitutions on performance, gut morphology, immune responses and blood constitutes of broiler chickens. Anim. Sci. J. 88, 306–313 (2016).
Google Scholar
Begley, M., Hill, C. & Gahan, C. G. M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738 (2006).
Google Scholar
Lye, H. S., Rusul, G. & Liong, M. T. Removal of cholesterol by Lactobacilli via incorporation of and conversion to coprostanol. J. Dairy Sci. 93, 1383–1392 (2010).
Google Scholar
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 3, 1101 (2008).
Google Scholar
O’Fallon, J. V., Busboom, J. R., Nelson, M. L. & Gaskins, C. T. A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet meat tissues, oils and feedstuffs. J. Anim. Sci. 85, 1511–1521 (2007).
Google Scholar
Mir, N. A. et al. Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Eur. J. Lipid Sci. Technol. 120, 1700470 (2018).
Google Scholar
Cunniff, P. Official Methods of Analysis of AOAC International (Association of Official Analytical Chemists, Washington, DC, 1995).
Dal Bosco, A., Mugnai, C., Ruggeri, S., Mattioli, S. & Castellini, C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poult. Sci. 91, 2039–2045 (2012).
Google Scholar
Kumar, F. et al. Role of flaxseed meal feeding for different durations in the lipid deposition and meat quality in broiler chickens. J. Am. Oil Chem. Soc. 96, 261–271 (2019).
Google Scholar
Pilarczyk, R., Woojcik, J., Sablik, P. & Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 45, 30–38 (2015).
Google Scholar
Frohlich, J. & Dobiášová, M. Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin. Chem. 49, 1873–1880 (2003).
Google Scholar

