Preloader

Hepatic transcriptome analysis reveals altered lipid metabolism and consequent health indices in chicken supplemented with dietary Bifidobacterium bifidum and mannan-oligosaccharides

  • 1.

    Huang, J. et al. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 61, 8565–8572 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Zhou, M. et al. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis. 15, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Dev, K. et al. Dietary lactobacillus acidophilus and mannan-oligosaccharides alter the lipid metabolism and health indices in broiler chickens. Probiot. Antimicrob. Proteins 1, 1–14. https://doi.org/10.1007/s12602-020-09717-9 (2020).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Al-Khalaifa, H. et al. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 98, 4465–4479 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Tu, T., Su, Y., Li, G., Zhang, X. & Tong, H. Expression of lipid metabolism-associated genes in male and female white feather chicken. J. Poult. Sci. 53, 118–123 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Zhang, B., Yang, X., Guo, Y. & Long, F. Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal 5, 1909–1915 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Yang, X., Zhang, B., Guo, Y., Jiao, P. & Long, F. Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 89, 254–260 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Begum, J., Buyamayum, B., Lingaraju, M. C. & Dev, K. Probiotics: Role in immunomodulation and consequent effects. Lett. Anim. Biol. 01(01), 01–07 (2021).

    Google Scholar 

  • 9.

    Saleh, A. A., Paray, B. A. & Dawood, M. A. O. Olive cake meal and Bacillus licheniformis impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals 10, 695. https://doi.org/10.3390/ani10040695 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Saleh, A. A., Hayashi, K., Ijiri, D. & Ohtsuka, A. Beneficial effects of Aspergillus awamori in broiler nutrition. World Poult. Sci. J. 70, 857–864 (2014).

    Article 

    Google Scholar 

  • 11.

    Park, Y. et al. Application of probiotics for the production of safe and high-quality poultry meat. Korean J. Food Sci. 36, 567–576 (2016).

    Article 

    Google Scholar 

  • 12.

    Maiorano, G. et al. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 96, 511–518 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Dev, K. et al. Dietary Mannan-oligosaccharides potentiate the beneficial effects of Bifidobacterium bifidum in broiler chicken. Lett. Appl. Microbiol. 71(5), 520–530 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Wang, W. W., Wang, J., Zhang, H. J., Wu, S. G. & Qi, G. H. Supplemental Clostridium butyricum modulates lipid metabolism through shaping gut microbiota and bile acid profile of aged laying hens. Front. Microbiol. 11, 600 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Yoo, S. R. et al. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 21, 2571–2578 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Saleh, A. A., Shukry, M., Farrag, F., Soliman, M. M. & Abdel-Moneim, A. M. E. Effect of feeding wet feed or wet feed fermented by bacillus licheniformis on growth performance, histopathology and growth and lipid metabolism marker genes in broiler chickens. Animals 11(1), 83. https://doi.org/10.3390/ani11010083 (2021).

    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Bera, I. et al. Soapnut shell powder as immunomodulatory and welfare friendly feed additive in broiler chicken. Indian J. Anim. Sci. 89, 1135–1139 (2019).

    CAS 

    Google Scholar 

  • 18.

    Kannan, M., Karunakaran, R., Balakrishnan, V. & Prabhakar, T. G. Influence of prebiotics supplementation on lipid profile of broilers. Int. J. Poult. Sci. 4, 994–997 (2005).

    Article 

    Google Scholar 

  • 19.

    Zhang, J. et al. Preventive effect of Lactobacillus plantarum CQPC10 on activated carbon induced constipation in Institute of Cancer Research (ICR) mice. Appl. Sci. 8, 1498 (2018).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Rather, S. A. et al. Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int. J. Dairy Technol. 67, 509 (2014).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Ooi, L. G. & Liong, M. T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in vivo and in vitro findings. Int. J. Mol. Sci. 11, 2499–2522 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Sevane, N. et al. Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLoS ONE 9, e98942 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Lu, M. W., Cao, Y., Xiao, J., Song, M. Y. & Ho, C. T. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: A review. Food Funct. 9, 4569–4581 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Nelson, D. L. & Cox, M. M. (eds) Lehninger Principles of Biochemistry (Worth Publishers, 2011).

    Google Scholar 

  • 25.

    Richards, M. P. et al. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133, 707–715 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Zhao, S., Ma, H., Zou, S., Chen, W. & Zhao, R. Hepatic lipogenesis in broiler chickens with different fat deposition during embryonic development. J. Vet. Med. A 54, 1–6 (2007).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Royan, M., Meng, G. Y., Othman, F., Sazili, A. Q. & Navidshad, B. Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits. Int. J. Mol. Sci. 12, 8581–8595 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Han, S., Vaziri, N. D., Gollapudi, P., Kwok, V. & Moradi, H. Hepatic fatty acid and cholesterol metabolism in nephrotic syndrome. Am. J. Transl. Res. 5, 246 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Weng, H., Endo, K., Li, J., Kito, N. & Iwai, N. Induction of peroxisomes by butyrate-producing probiotics. PLoS ONE 10, e0117851 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Proszkowiec-Weglarz, M. & Richards, M. P. Expression and activity of the 5’-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development. Poult. Sci. 88, 178 (2009).

    Article 

    Google Scholar 

  • 31.

    Basiricò, L. et al. Down-regulation of hepatic ApoB100 expression during hot season in transition dairy cows. Livest. Sci. 137, 49–57 (2011).

    Article 

    Google Scholar 

  • 32.

    Zhang, W. et al. FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281, 10105–10117 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Zerehdaran, S., Vereijken, A. L., Arendonk, J. V. & Van der Waaij, E. H. Effect of age and housing system on genetic parameters for broiler carcass traits. Poult. Sci. 84, 833–838 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    de Souza Khatlab, A., Del Vesco, A. P., Gasparino, E. & de Oliveira Neto, A. R. Gender and age effects on the expression of genes related to lipid metabolism in broiler’s liver. Czech J. Anim. Sci. 63, 103–109 (2018).

    Article 

    Google Scholar 

  • 35.

    Huang, J. B., Zhang, Y., Zhou, Y. B., Wan, X. C. & Zhang, J. S. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J. Anim. Physiol. Anim. Nutr. 99, 719–727 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Bogusławska-Tryk, M., Piotrowska, A., Szymeczko, R., Burlikowska, K. & Głowińska, B. Lipid metabolism indices and fatty acids profile in the blood serum of broiler chickens fed a diet with lignocellulose. Braz. J. Poult. Sci. 18, 451–456 (2016).

    Article 

    Google Scholar 

  • 37.

    Yeon, S. J., Kim, S. K., Kim, J. M., Lee, S. K. & Lee, C. H. Effects of fermented pepper powder on body fat accumulation in mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 77, 2294–2297 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Naghi, S. A., Ghasemi, H. A. & Taherpour, K. Evaluation of Aloe vera and symbiotic as antibiotic growth promoter substitutions on performance, gut morphology, immune responses and blood constitutes of broiler chickens. Anim. Sci. J. 88, 306–313 (2016).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Begley, M., Hill, C. & Gahan, C. G. M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Lye, H. S., Rusul, G. & Liong, M. T. Removal of cholesterol by Lactobacilli via incorporation of and conversion to coprostanol. J. Dairy Sci. 93, 1383–1392 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 3, 1101 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    O’Fallon, J. V., Busboom, J. R., Nelson, M. L. & Gaskins, C. T. A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet meat tissues, oils and feedstuffs. J. Anim. Sci. 85, 1511–1521 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 43.

    Mir, N. A. et al. Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Eur. J. Lipid Sci. Technol. 120, 1700470 (2018).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Cunniff, P. Official Methods of Analysis of AOAC International (Association of Official Analytical Chemists, Washington, DC, 1995).

    Google Scholar 

  • 45.

    Dal Bosco, A., Mugnai, C., Ruggeri, S., Mattioli, S. & Castellini, C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poult. Sci. 91, 2039–2045 (2012).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Kumar, F. et al. Role of flaxseed meal feeding for different durations in the lipid deposition and meat quality in broiler chickens. J. Am. Oil Chem. Soc. 96, 261–271 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Pilarczyk, R., Woojcik, J., Sablik, P. & Czerniak, P. Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S. Afr. J. Anim. Sci. 45, 30–38 (2015).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Frohlich, J. & Dobiášová, M. Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin. Chem. 49, 1873–1880 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Source link