Preloader

Haemagglutinin antigen selectively targeted to chicken CD83 overcomes interference from maternally derived antibodies in chickens

  • Chmielewski, R. & Swayne, D. E. Avian influenza: public health and food safety concerns. Annu. Rev. Food Sci. Technol. 2, 37–57 (2011).

    PubMed 

    Google Scholar 

  • Szucs, T. et al. Economic and social impact of epidemic and pandemic influenza. Vaccine 24, 6776–6778 (2006).

    Google Scholar 

  • Basuno, E., Yusdja, Y. & Ilham, N. Socio‐economic impacts of avian influenza outbreaks on small‐scale producers in Indonesia. Transbound. Emerg. Dis. 57, 7–10 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Govindaraj, G. et al. Economic impacts of avian influenza outbreaks in Kerala, India. Transbound. Emerg. Dis. 65, e361–e372 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Capua, I. & Alexander, D. J. Avian influenza: recent developments. Avian Pathol. 33, 393–404 (2004).

    PubMed 

    Google Scholar 

  • World Organisation for Animal Health (OIE). Avian influenza (including infection with high pathogenicity avian influenza viruses. Terrestrial manual online access: manual of diagnostic tests and vaccines for terrestrial animals. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf. Accessed 30 July 2021 (2021).

  • Tian, G. et al. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 341, 153–162 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • van Der Goot, J. A., Koch, G., de Jong, M. C. M. & van Boven, M. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proc. Natl. Acad. Sci. USA 102, 18141 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. W. & Suarez, D. L. Avian influenza virus: prospects for prevention and control by vaccination. Anim. Heal. Res. Rev. 6, 1–15 (2005).

    Google Scholar 

  • Lardinois, A. et al. Stronger interference of avian influenza virus-specific than newcastle disease virus-specific maternally derived antibodies with a recombinant NDV-H5 vaccine. Avian Dis. 60, 191–201 (2016).

    PubMed 

    Google Scholar 

  • Naeem, K., Siddique, N., Ayaz, M. & Jalalee, M. A. Avian influenza in pakistan: outbreaks of low- and high-pathogenicity avian influenza in Pakistan during 2003–2006. Avian Dis. 51, 189–193 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bashashati, M., Vasfi, M. M., Bozorgmehri Fard, M. H. & Hashemzadeh, M. Efficacy of inactivated H9N2 avian influenza vaccine against non-highly pathogenic A/Chicken/Iran/ZMT-173/1999 infection. Archiv. Razi Instit. 54, 23–32 (2002).

  • Liu, S. et al. Control of avian influenza in China: strategies and lessons. Transbound. Emerg. Dis. 67, 1463–1471 (2020).

    PubMed 

    Google Scholar 

  • Capua, I. & Alexander, D. J. Avian influenza vaccines and vaccination in birds. Vaccine 26, D70–D73 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Baintner, K. Transmission of antibodies from mother to young: evolutionary strategies in a proteolytic environment. Vet. Immunol. Immunopathol. 117, 153–161 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Brambell, F. W. R. The transmission of immune globulins from the mother to the foetal and newborn young. Proc. Nutr. Soc. 28, 35–41 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • Loeken, M. R. & Roth, T. F. Analysis of maternal IgG subpopulations which are transported into the chicken oocyte. Immunology 49, 21 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, R., Youngner, J. S., Weigle, W. O. & Dixon, F. J. Antibody production and transfer to egg yolk in chickens. J. Immunol. 89, 272–278 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • Brierley, J. & Hemmings, W. A. The selective transport of antibodies from the yolk sac to the circulation of the chick. Development 4, 34–41 (1956).

    Google Scholar 

  • Tesar, D. B., Cheung, E. J. & Bjorkman, P. J. The chicken yolk sac IgY receptor, a mammalian mannose receptor family member, transcytoses IgY across polarized epithelial cells. Mol. Biol. Cell 19, 1587 (2008).

  • Kramer, T. T. & Cho, H. C. Transfer of immunoglobulins and antibodies in the hen’s egg. Immunology 19, 1587–1593 (2008).

    Google Scholar 

  • Kowalczyk, K., Daiss, J., Halpern, J. & Roth, T. F. Quantitation of maternal-fetal IgG transport in the chicken. Immunology 54, 755–762 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mast, J. & Goddeeris, B. M. Development of immunocompetence of broiler chickens. Vet. Immunol. Immunopathol. 70, 245–256 (1999).

  • Al-Natour, M. Q., Ward, L. A., Saif, Y. M., Stewart-Brown, B. & Keck, L. D. Effect of different levels of maternally derived antibodies on protection against infectious bursal disease virus. Avian Dis. 48, 177–182 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Carlier, Y. & Truyens, C. Influence of maternal infection on offspring resistance towards parasites. Parasitol. Today 11, 94–99 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Lemke, H., Tanasa, R. I., Trad, A. & Lange, H. Benefits and burden of the maternally-mediated immunological imprinting. Autoimmun. Rev. 8, 394–399 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Grindstaff, J. L. Maternal antibodies reduce costs of an immune response during development. (author abstract) (report). J. Exp. Biol. 211, 654 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Watts, C. et al. Modulation by epitope-specific antibodies of class II MHC-restricted presentation of the tetanus toxin antigen. Immunol. Rev. 164, 11–16 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D., Huey, D., Oglesbee, M. & Niewiesk, S. Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 117, 6143–6151 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niewiesk, S. Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front. Immunol. 5, 446 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amer, M. M., Hamouda, A. S. & El-Bayomi, K. M. Studies on maternal antibodies to avian influenza H9N2 vaccine. J. Vet. Med. Res. 20, 268–274 (2010).

    Google Scholar 

  • Maas, R., Rosema, S., van Zoelen, D. & Venema, S. Maternal immunity against avian influenza H5N1 in chickens: limited protection and interference with vaccine efficacy. Avian Pathol. 40, 87–92 (2011).

    PubMed 

    Google Scholar 

  • De Vriese, A. J. et al. Passive protection afforded by maternally-derived antibodies in chickens and the antibodies’ interference with the protection elicited by avian influenza-inactivated vaccines in progeny. Avian Dis. 54, 246–252 (2020).

  • Caminschi, I. & Shortman, K. Boosting antibody responses by targeting antigens to dendritic cells. Trends Immunol. 33, 71–77 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Shrestha, A., Jean-Remy, S. & Iqbal, M. Enhancing protective efficacy of poultry vaccines through targeted delivery of antigens to antigen-presenting cells. Vaccines 6, 75 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • Carayanniotis, G., Skea, D. L., Luscher, M. A. & Barber, B. H. Adjuvant-independent immunization by immunotargeting antigens to MHC and non-MHC determinants in vivo. Mol. Immunol. 28, 261–267 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • White, A. L. et al. Ligation of CD11c during vaccination promotes germinal centre induction and robust humoral responses without adjuvant. Immunology 131, 141–151 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frleta, D., Demian, D. & Wade, W. F. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo. Int. Immunopharmacol. 1, 265–275 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    CAS 
    Article 

    Google Scholar 

  • Dhodapkar, M. V. et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci. Transl. Med. 6, 232ra51 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jáuregui-Zúñiga, D. et al. Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Res. Vet. Sci. 111, 55–62 (2017).

    PubMed 

    Google Scholar 

  • Shrestha, A., Chang, P., Smith, A. & Hulten, M. Van. Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian in fl uenza. npj Vaccines. 6, 1–12 (2021).

    Google Scholar 

  • Cardenas-Garcia, S. et al. Maternally-derived antibodies protect against challenge with highly pathogenic avian influenza virus of the H7N3 subtype. Vaccines 7, 1–13 (2019).

    Google Scholar 

  • Kilany, W. H. et al. Comparison of the effectiveness of rHVT-H5, inactivated H5 and rHVT-H5 with inactivated H5 prime/boost vaccination regimes in commercial broiler chickens carrying MDAs against HPAI H5N1 clade 2.2.1 virus. Avian Pathol. 44, 333–341 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bertran, K. et al. Maternal antibody inhibition of recombinant Newcastle disease virus vectored vaccine in a primary or booster avian influenza vaccination program of broiler chickens. Vaccine 36, 6361–6372 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Talat, S. et al. Comparison of the effectiveness of two different vaccination regimes for Avian Influenza H9N2 in broiler chicken. Animals 10, 1875 (2020).

    PubMed Central 

    Google Scholar 

  • Hein, R. et al. Review of poultry recombinant vector vaccines. Avian Dis. 65, 438–452 (2021).

    PubMed 

    Google Scholar 

  • Soejoedono, R. D. et al. Efficacy of a recombinant HVT-H5 vaccine against challenge with two genetically divergent Indonesian HPAI H5N1 strains. Avian Dis. 56, 923–927 (2012).

    PubMed 

    Google Scholar 

  • Swayne, D. E., Beck, J. R. & Kinney, N. Failure of a recombinant fowl poxvirus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Dis. 44, 132–137 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Witter, R. & Burmester, B. Differential effect of maternal antibodies on efficacy of cellular and cell-free Marek’s disease vaccines. Avian Pathol. 8, 145–156 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • Heller, E. D. & Schat, K. A. Enhancement of natural killer cell activity by Marek’s disease vaccines. Avian Pathol. 16, 51–60 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Reddy, S. et al. Protective efficacy of a recombinant herpesvirus of turkeys as an in ovo vaccine against Newcastle and Marek’s diseases in specific-pathogen-free chickens. Vaccine 14, 469–477 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Weeratna, R. D., Brazolot Millan, C. L., Mccluskie, M. J., Siegrist, C.-A. & Davis, H. L. Priming of immune responses to hepatitis B surface antigen in young mice immunized in the presence of maternally derived antibodies. FEMS Immunol. Med. Microbiol. 30, 241–247 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Sedova, E. S. et al. Recombinant Influenza Vaccines. Acta Nat. 4, 17–27 (2012).

    CAS 

    Google Scholar 

  • Kim, D. & Niewiesk, S. Synergistic induction of interferon α through TLR-3 and TLR-9 agonists identifies CD21 as interferon α receptor for the B cell response. PLoS Pathog. 9, e1003233 (2013).

  • Shirota, H. & Klinman, D. M. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev. Vaccines 13, 299–312 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Heyman, B., Pilstrom & Shulman, M. Complement activation is required for IgM-mediated enhancement of the antibody response. J. Exp. Med. 167, 1999–2004 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Peyre, M. et al. Added value of avian influenza (H5) day-old chick vaccination for disease control in Egypt. Avian Dis. 60, 245–252 (2016).

    PubMed 

    Google Scholar 

  • De Vriese, J. et al. Passive protection afforded by maternally-derived antibodies in chickens and the antibodies’ interference with the protection elicited by avian influenza–inactivated vaccines in progeny. Avian Dis. 54, 246–252 (2010).

    PubMed 

    Google Scholar 

  • World Health Organization. WHO Global Influenza. Surveillance Network. WHO Global Influenza Surveillance Network: Manual For The Laboratory Diagnosis and Virological Surveillance of Influenza (WHO, 2011).

  • Source link