Preloader

Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collection

  • 1.

    Cubero, J. I. On the evolution of Vicia faba L. Theor. Appl. Genet. 45, 47–51 (1974).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Tanno, K. I. & Willcox, G. The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium BP. Veg. Hist. Archaeobot. 15, 197–204 (2006).

    Google Scholar 

  • 3.

    Caracuta, V. et al. 14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  • 4.

    FAOSTAT. Food and Agriculture Organization of the United Nations. www.faostat.fao.org. Accessed 25 April 2021 (2020).

  • 5.

    Crépon, K. et al. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 115, 329–339 (2010).

    Google Scholar 

  • 6.

    Hauggaard-Nielsen, H., Mundus, S. & Jensen, E. S. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops. Nutr. Cycl. Agroecosyst. 84, 281–291 (2009).

    CAS 

    Google Scholar 

  • 7.

    Stagnari, F., Maggio, A., Galieni, A. & Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 4, 1–13 (2017).

    Google Scholar 

  • 8.

    Zhou, R. et al. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 214, 1–13 (2017).

    ADS 

    Google Scholar 

  • 9.

    Anjum, N. A. Book review: Legumes under environmental stress: Yield, improvement and adaptations. Front. Plant Sci. 7, 798 (2016).

    PubMed Central 

    Google Scholar 

  • 10.

    Stoddard, F. L. et al. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147, 167–186 (2006).

    Google Scholar 

  • 11.

    Sillero, J. C. et al. Faba bean breeding for disease resistance. Field Crops Res. 115, 297–307 (2010).

    Google Scholar 

  • 12.

    Stoddard, F. L., Nicholas, A. H., Rubiales, D., Thomas, J. & Villegas-Fernández, A. M. Integrated pest management in faba bean. Field Crops Res. 115, 308–318 (2010).

    Google Scholar 

  • 13.

    Khamassi, K. et al. A baseline study of vicine–convicine levels in faba bean (Vicia faba L.) germplasm. Plant Genet. Resour. 11, 250–257 (2013).

    CAS 

    Google Scholar 

  • 14.

    Cooper, J. W. et al. Enhancing faba bean (Vicia faba L.) genome resources. J. Exp. Bot. 68, 1941–1953 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Carrillo-Perdomo, E. et al. Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci. Rep. 10, 1–14 (2020).

    Google Scholar 

  • 16.

    Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Morozova, O. & Marra, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics 92, 255–264 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Gnanasambandam, A. et al. Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agron. 2, 132–166 (2012).

    Google Scholar 

  • 19.

    Flint-Garcia, S. A., Thornsberry, J. M. & Buckler, E. S. IV. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54, 357–374 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 9, 1–9 (2013).

    Google Scholar 

  • 21.

    Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat. Methods 11, 407–409 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Maalouf, F. et al. Breeding and genomics status in faba bean (Vicia faba). Plant Breed. 138, 465–473 (2019).

    Google Scholar 

  • 23.

    Webb, A. et al. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). Plant Biotechnol. J. 14, 177–185 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Satovic, Z. et al. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genom. 14, 1–15 (2019).

    Google Scholar 

  • 25.

    Ellwood, S. R. et al. Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genom. 9, 1–1 (2008).

    Google Scholar 

  • 26.

    Kaur, S. et al. SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci. 217, 47–55 (2014).

    PubMed 

    Google Scholar 

  • 27.

    Ocaña-Moral, S., Gutiérrez, N., Torres, A. M. & Madrid, E. Saturation mapping of regions determining resistance to Ascochyta blight and broomrape in faba bean using transcriptome-based SNP genotyping. Theor. Appl. Genet. 130, 2271–2282 (2017).

    PubMed 

    Google Scholar 

  • 28.

    Khazaei, H. et al. Flanking SNP markers for vicine–convicine concentration in faba bean (Vicia faba L.). Mol. Breed. 35, 1–6 (2015).

    CAS 

    Google Scholar 

  • 29.

    Song, M. Preventing favism by selecting faba bean mutants using molecular markers. SFJ. 3, 2–6 (2017).

    Google Scholar 

  • 30.

    Maalouf, F. et al. Breeding for post-emergence herbicide tolerance in cool-season food legumes. In Proceedings of the International Conference on Pulses, 65 (Marrakesh, 18–20 April 2016).

  • 31.

    Babiker, A. G. T. & Khalid, M. E. Chemical weed control in faba bean at Wad Hamid. In Annual Report, Hudieba Research Station 183–185 (Agric. Res. Corp (ARC), 1990).

    Google Scholar 

  • 32.

    Rubiales, D. & Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 32, 433–449 (2012).

    CAS 

    Google Scholar 

  • 33.

    Pérez-de-Luque, A. et al. Broomrape management in faba bean. Field Crops Res. 115, 319–328 (2010).

    Google Scholar 

  • 34.

    Singh, N. P. & Yadav, I. S. Herbicide tolerant food legume crops: possibilities and prospects. In Herbicides-properties, synthesis and control of weeds (ed. Hasaneen M. N.) 435–452. (InTech, 2012).‏‏

  • 35.

    Minotti, P. L. & Sweet, R. D. Role of crop competition in limiting losses from weeds. In Handbook of Pest Management in Agriculture (ed. Pimental, D.) 351–367 (CRC Handbook of Pest Management in Agriculture, 1981).

    Google Scholar 

  • 36.

    Berkowitz, A. R. Competition for resources in weed-crop mixtures. In Weed Management in Agrosystems: Ecological Approaches (eds Altiera, M. A. & Liebman, M.) 89–119 (CRC Press, 1981).

    Google Scholar 

  • 37.

    Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).

    ADS 

    Google Scholar 

  • 38.

    Rubiales, D. Can we breed for durable resistance to broomrapes?. Phytopath. Mediterranea 57, 170–185 (2018).

    Google Scholar 

  • 39.

    Rispail, N. et al. Plant resistance to parasitic plants: Molecular approaches to an old foe. New Phytol. 173, 703–712 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Beckie, H. J. et al. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 86, 1243–1264 (2006).

    Google Scholar 

  • 41.

    Mao, D. et al. Developing Improved Herbicide Tolerance in Pulse Crops. (Grain Research and Development Corporation, 2016). https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2016/02/developing-improved-herbicide-tolerance-in-pulse-crops (accessed on 24 April 2021).

  • 42.

    Abou-Khater, L. et al. Identification of tolerance to metribuzin and imazethapyr herbicides in faba bean (Vicia faba L.). Crop Sci. 1–19 (2021).

  • 43.

    GRDC. Grownotes Faba Bean Section 17 Environmental Issues. https://grdc.com.au/ (accessed on 5 April 2021). (2017).

  • 44.

    Pulse Australia. Managing Pulses to Minimize Frost Damage. http://www.pulseaus.com.au/ (accessed on 5 April 2021).

  • 45.

    García-Torres, L. & López-Granados, F. Control of broomrape (Orobanche crenata Forsk.) in broad bean (Vicia faba L.) with imidazolinones and other herbicides. Weed Res. 31, 227–235 (1991).

    Google Scholar 

  • 46.

    Sharma, S. R. et al. Effect of post-emergence herbicide metribuzin application on morpho-physiological traits,yield and yield components in Lentil (Lens culinaris Medik.). In Proceedings of the International Conference on Pulses for Health, Nutrition, and Sustainable Agriculture in Drylands, 100 (Marrakesh, Morocco,18–20 April 2016).

  • 47.

    Sharma, S. R. et al. Genetic variation for tolerance to post-emergence herbicide, imazethapyr in lentil (Lens culinaris Medik). Arch. Agron. Soil Sci. 64, 1818–1830 (2018).

    CAS 

    Google Scholar 

  • 48.

    Taran, B., Warkentin, T. D., Vandenberg, A. & Holm, F. A. Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Can. J. Plant Sci. 90, 139–142 (2010).

    CAS 

    Google Scholar 

  • 49.

    Wall, D. A. Lentil (Lens culinaris) and faba bean (Vicia faba) tolerance to post-emergence applications of imazethapyr. Can. J. Plant Sci. 76, 525–529 (1996).

    CAS 

    Google Scholar 

  • 50.

    Sajja, S. et al. Effect of post-emergence herbicide imazethapyr on phenological and agronomic traits in chickpea breeding lines. In Proceedings of the International Plant Breeding Congress (IPBC) and EucarpiaOil and Protein Crops Section Conference (Antalya, Turkey, 1–5 November 2015).

  • 51.

    Senseman, S. A. Herbicide Handbook. 9th ed.; Weed Science Society of America. (Lawrence, US, 2007) ISBN 1891276565, 9781891276569.

  • 52.

    Trebst, A. & Wietoska, H. Mode of action and structure-activity-relationships of the aminotriazinone herbicide Metribuzin. Inhibition of photosynthetic electron transport in chloroplasts by Metribuzin (author’s transl). Zeitschrift fur Naturforschung, Section C, Biosciences 30, 499–504 (1975).

  • 53.

    Shaner, D. L., Anderson, P. C. & Stidham, M. A. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76, 545–546 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Saari, L. L. & Mauvais, C. J. Sulfonylurea herbicide-resistant crops. In Herbicide-Resistant crops (ed. Duke, S. O.) 127–142 (CRC Press, 1996).

    Google Scholar 

  • 55.

    Tecle, B., Da Cunha, A. & Shaner, D. L. Differential routes of metabolism of imidazolinones, basis for soybean (Glycine max) selectivity. Pestic. Biochem. Phys. 46, 120–130 (1993).

    CAS 

    Google Scholar 

  • 56.

    Manickavelu, A. et al. Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. Plant Sci. 252, 222–229 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Oladzad, A. et al. Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. G3 9, 1881–1892 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Sallam, A. & Martsch, R. Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 143, 501–514 (2015).

    PubMed 

    Google Scholar 

  • 59.

    Ali, M. B. et al. Association analyses to genetically improve drought and freezing tolerance of faba bean (Vicia faba L.). Crop Sci. 56, 1036–1048 (2016).

    CAS 

    Google Scholar 

  • 60.

    Mulugeta, B., Tesfaye, K., Keneni, G. & Ahmed, S. Genetic diversity in spring faba bean (Vicia faba L.) genotypes as revealed by high-throughput KASP SNP markers. Genet Resour. Crop Evol. 68, 1971–1986 (2021).

    CAS 

    Google Scholar 

  • 61.

    Yu, X., Yang, A. & James, A. T. Selecting soybeans for sulfonylurea herbicide tolerance: A comparative proteomic study of seed germinations. Crop Pasture Sci. 68, 27–32 (2017).

    CAS 
    ADS 

    Google Scholar 

  • 62.

    Brown, H. M. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29, 263–281 (1990).

    CAS 

    Google Scholar 

  • 63.

    Lehti-Shiu, M. D., Zou, C., Hanada, K. & Shiu, S. H. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150, 12–26 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Chae, L., Pandey, G. K., Luan, S., Cheong, Y. H. & Kim, K. N. Protein kinases and phosphatases for stress signal transduction in plants. In Abiotic Stress Adaptation in Plants (eds Pareek, A. et al.) 123–163 (Springer, 2009).

    Google Scholar 

  • 66.

    Shehzad, M. et al. Genome-wide mining and identification of protein Kinase Gene Family impacts salinity stress tolerance in highly dense genetic map developed from interspecific cross between G. hirsutum L. and G. darwinii G Watt. Agronomy 9, 560 (2019).

    CAS 

    Google Scholar 

  • 67.

    Burns, E. E., Keith, B. K., Refai, M. Y., Bothner, B. & Dyer, W. E. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. J. Plant Physiol. 220, 105–114 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Roy, S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal. Behav. 11, e1117723 (2016).

    PubMed 

    Google Scholar 

  • 69.

    Katiyar, A. et al. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genom. 13, 1–19 (2012).

    Google Scholar 

  • 70.

    Bhoite, R., Si, P., Siddique, K. H. & Yan, G. Comparative transcriptome analyses for metribuzin tolerance provide insights into key genes and mechanisms restoring photosynthetic efficiency in bread wheat (Triticum aestivum L.). Genomics 113, 910–918 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Rachna, C. Difference Between Photosystem I and Photosystem II. Bio Differences. https://biodifferences.com/difference-between-photosystem-i-and-photosystem-ii.html (accessed on 10 May 2021) (2019).

  • 72.

    Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and weeds. Ann. App. Biol. 119, 561–601 (1991).

    Google Scholar 

  • 73.

    Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 74.

    Glaubitz, J. C. et al. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 75.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Goedhart, P. W. & Thissen, J. T. N. M. Biometris Genstat procedure library manual 19th edn. (Biometris, Wageningen, 2018).

    Google Scholar 

  • 77.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Weir, B. S. Genetic Data Analysis. Methods for Discrete Population Genetic Data (Sinauer Associates Inc Publishers, Sunderland, 1990).

    Google Scholar 

  • Source link