Friedt, W., Tu, J. & Fu, T. In The Brassica napus Genome (eds Liu, S. et al.) 1–20 (Springer International Publishing, 2018).
Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4, 23–29. https://doi.org/10.1038/s41477-017-0083-8 (2018).
Google Scholar
Williams, P. H. & Hill, C. B. Rapid-cycling populations of Brassica. Science 232, 1385–1389. https://doi.org/10.1126/science.232.4756.1385 (1986).
Google Scholar
Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953. https://doi.org/10.1126/science.1253435 (2014).
Google Scholar
Lu, K. et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 10, 1154. https://doi.org/10.1038/s41467-019-09134-9 (2019).
Google Scholar
Karunarathna, N. L., Wang, H. Y., Harloff, H. J., Jiang, L. X. & Jung, C. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnol. J. https://doi.org/10.1111/pbi.13381 (2020).
Google Scholar
Sashidhar, N., Harloff, H. J., Potgieter, L. & Jung, C. T. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18, 2241–2250. https://doi.org/10.1111/pbi.13380 (2020).
Google Scholar
Braatz, J. et al. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174, 935–942. https://doi.org/10.1104/pp.17.00426 (2017).
Google Scholar
Kupferschmidt, K. EU verdict on CRISPR crops dismays scientists. Science 361, 435–436 (2018).
Google Scholar
Shah, S., Karunarathna, N. L., Jung, C. & Emrani, N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC Plant Biol. https://doi.org/10.1186/S12870-018-1606-9 (2018).
Google Scholar
Braatz, J., Harloff, H. J. & Jung, C. EMS-induced point mutations in ALCATRAZ homoeologs increase silique shatter resistance of oilseed rape (Brassica napus). Euphytica https://doi.org/10.1007/s10681-018-2113-7 (2018).
Google Scholar
Simmonds, J. et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 129, 1099–1112. https://doi.org/10.1007/s00122-016-2686-2 (2016).
Google Scholar
Guo, Y., Hans, H., Christian, J. & Molina, C. Mutations in single FT– and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front. Plant Sci. https://doi.org/10.3389/Fpls.2014.00282 (2014).
Google Scholar
Hasan, M. M. et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254. https://doi.org/10.1080/13102818.2014.995920 (2015).
Google Scholar
Lenaerts, B., Collard, B. C. Y. & Demont, M. Review: Improving global food security through accelerated plant breeding. Plant. Sci. 287, 1. https://doi.org/10.1016/j.plantsci.2019.110207 (2019).
Google Scholar
Jamaloddin, M. et al. Marker Assisted Gene Pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety “Tellahamsa”. PLoS ONE https://doi.org/10.1371/journal.pone.0234088 (2020).
Google Scholar
Herzog, E. & Frisch, M. Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor. Appl. Genet. 123, 251–260. https://doi.org/10.1007/s00122-011-1581-0 (2011).
Google Scholar
Snowdon, R. J. & Luy, F. L. I. Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed. 131, 351–360. https://doi.org/10.1111/j.1439-0523.2012.01976.x (2012).
Google Scholar
Obermeier, C. & Friedt, W. 16 – Applied oilseed rape marker technology and genomics. In Applied Plant Genomics and Biotechnology (eds Poltronieri, P. & Hong, Y.) 253–295 (Woodhead Publishing, 2015). https://doi.org/10.1016/B978-0-08-100068-7.00016-1.
Google Scholar
Delourme, R. et al. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14, 120. https://doi.org/10.1186/1471-2164-14-120 (2013).
Google Scholar
Delourme, R. et al. Genes and Quantitative Trait Loci Mapping for Major Agronomic Traits in Brassica napus L. In The Brassica napus Genome (eds Liu, S. et al.) 41–85 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-43694-4_3.
Google Scholar
Dalton-Morgan, J. et al. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct. Integr. Genomic 14, 643–655. https://doi.org/10.1007/s10142-014-0391-2 (2014).
Google Scholar
Clarke, W. E. et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor. Appl. Genet. 129, 1887–1899. https://doi.org/10.1007/s00122-016-2746-7 (2016).
Google Scholar
Mason, A. S. et al. High-throughput genotyping for species identification and diversity assessment in germplasm collections. Mol. Ecol. Resour. 15, 1091–1101. https://doi.org/10.1111/1755-0998.12379 (2015).
Google Scholar
Li, F. et al. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21, 355–367. https://doi.org/10.1093/dnares/dsu002 (2014).
Google Scholar
Hatzig, S. V. et al. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front. Plant. Sci. 6, 221. https://doi.org/10.3389/fpls.2015.00221 (2015).
Google Scholar
Xu, L. et al. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23, 43–52. https://doi.org/10.1093/dnares/dsv035 (2016).
Google Scholar
Wei, L. J. et al. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant. Biotechnol. J. 14, 1368–1380. https://doi.org/10.1111/pbi.12501 (2016).
Google Scholar
Qu, C. M. et al. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L. Genes-Basel 6, 1215–1229. https://doi.org/10.3390/genes6041215 (2015).
Google Scholar
Zhang, J. et al. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front. Plant Sci. https://doi.org/10.3389/Fpls.2015.01058 (2015).
Google Scholar
Sashidhar, N., Harloff, H.-J. & Jung, C. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large scale screening of mutant populations through amplicon sequencing. New Phytol. https://doi.org/10.1111/nph.16281 (2019).
Google Scholar
Sashidhar, N., Harloff, H. J. & Jung, C. Knockout of MULTI-DRUG RESISTANT PROTEIN 5 genes lead to low phytic acid contents in oilseed rape. Front Plant Sci 11, 1. https://doi.org/10.3389/fpls.2020.00603 (2020).
Google Scholar
Harloff, H. J. et al. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor. Appl. Genet. 124, 957–969. https://doi.org/10.1007/s00122-011-1760-z (2012).
Google Scholar
Saxena, K. B., Saxena, R. K., Hickey, L. T. & Varshney, R. K. Can a speed breeding approach accelerate genetic gain in pigeonpea?. Euphytica 215, 202. https://doi.org/10.1007/s10681-019-2520-4 (2019).
Google Scholar
Mobini, S. H., Lulsdorf, M., Warkentin, T. D. & Vandenberg, A. Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev-Pl 51, 71–79. https://doi.org/10.1007/s11627-014-9647-8 (2015).
Google Scholar
Herzog, E. & Frisch, M. Efficient marker-assisted backcross conversion of seed-parent lines to cytoplasmic male sterility. Plant Breed. 132, 33–41. https://doi.org/10.1111/pbr.12021 (2013).
Google Scholar
Frisch, M. & Melchinger, A. E. Selection theory for marker-assisted backcrossing. Genetics 170, 909–917. https://doi.org/10.1534/genetics.104.035451 (2005).
Google Scholar
Bernardo, R., Murigneux, A., Maisonneuve, J. P., Johnsson, C. & Karaman, Z. RFLP-based estimates of parental contribution to F2– and BC1-derived maize inbreds. Theor. Appl. Genet. 94, 652–656. https://doi.org/10.1007/s001220050462 (1997).
Google Scholar
Sagare, D. B., Shetti, P., Surender, M. & Reddy, S. S. Marker-assisted backcross breeding for enhancing β-carotene of QPM inbreds. Mol Breed. https://doi.org/10.1007/s11032-019-0939-x (2019).
Google Scholar
Rai, N. et al. Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed. 137, 514–526. https://doi.org/10.1111/pbr.12605 (2018).
Google Scholar
Chukwu, S. C. et al. Genetic analysis of microsatellites associated with resistance against bacterial leaf blight and blast diseases of rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 34, 898–904. https://doi.org/10.1080/13102818.2020.1809520 (2020).
Google Scholar
Randhawa, H. S. et al. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS ONE https://doi.org/10.1371/journal.pone.0005752 (2009).
Google Scholar
Frisch, M. & Melchinger, A. E. Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci. 41, 1716–1725. https://doi.org/10.2135/cropsci2001.1716 (2001).
Google Scholar
Emrani, N., Harloff, H. J., Gudi, O., Kopisch-Obuch, F. & Jung, C. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes. Mol. Breed. https://doi.org/10.1007/s11032-015-0236-2 (2015).
Google Scholar
Saghaimaroof, M. A., Soliman, K. M., Jorgensen, R. A. & Allard, R. W. Ribosomal DNA spacer-length polymorphisms in Barley–Mendelian inheritance, chromosomal location, and population-dynamics. Proc. Natl. Acad. Sci. Biol. 81, 8014–8018. https://doi.org/10.1073/pnas.81.24.8014 (1984).
Google Scholar
Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).
Google Scholar
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).
Google Scholar
Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).
Google Scholar
Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. http://www.R-project.org (2019).
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org

