Preloader

Genomic analysis of ionome-related QTLs in Arabidopsis thaliana

  • 1.

    Singh, S. B., Singh, K., Butola, S. S., Rawat, S. & Arunachalam, K. Determination of macronutrients, micronutrients and heavy metals present in Spilanthes acmella Hutch and Dalz: possible health effects. Nat. Prod. Sci. 26(1), 50–58 (2020).

    CAS 

    Google Scholar 

  • 2.

    Singh, U. M., Sareen, P., Sengar, R. S. & Kumar, A. Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol. Plant. 35(9), 2641–2653 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Khan, M. et al. Trace elements in abiotic stress tolerance. In Plant Nutrients and Abiotic Stress Tolerance (ed. Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K. & Hawrylak-Nowak, B.) 137–151 (Springer, Singapore, 2018).

  • 4.

    Narwal, R. P., Malik, R. S., Malhotra, S. K. & Singh, B. R. Micronutrients and human health. In Encyclopedia of Soil Science (ed. Lal, R.) 1443–1448 (CRC Press, 2017).

  • 5.

    Pecora, F., Persico, F., Argentiero, A., Neglia, C. & Esposito, S. The role of micronutrients in support of the immune response against viral infections. Nutrients 12(10), 3198 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Shariatipour, N. & Heidari, B. Genetic-based biofortification of staple food crops to meet zinc and iron deficiency-related challenges. In Plant Micronutrients: Deficiency and Toxicity Management (ed. Aftab, T. & Hakeem, K.R.) 173–223 (Springer, Cham, 2020).

  • 7.

    Salgueiro, M. J. et al. Zinc status and immune system relationship. Biol. Trace Elem. Res. 76, 193–205 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Maxfield, L., & Crane, J. S. Zinc deficiency. In StatPearls. Treasure Island (FL: StatPearls Publishing, 2020).

  • 9.

    Hodge, J. Hidden hunger: approaches to tackling micronutrient deficiencies. In Nourishing Millions: Stories of Change in Nutrition (ed. Gillespie, S., Hodge, J., Yosef, S. & Pandya-Lorch, R.) 35–43 (Washington: International Food Policy Research Institute (IFPRI), 2016).

  • 10.

    Salt, D. E., Baxter, I. & Lahner, B. Ionomics and the study of the plant ionome. Annu. Rev. Plant. Biol. 59, 709–733 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Baxter, I. Ionomics: the functional genomics of elements. Brief. Funct. Genomics 9(2), 149–156 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Barh, D. OMICS Applications in Crop Science (CRC Press, 2013).

    Book 

    Google Scholar 

  • 13.

    Borém, A. & Fritsche-Neto, R. Omics in plant breeding. (Wiley Blackwell, 2014).

  • 14.

    Vreugdenhil, D., Aarts, M. G., Koornneef, M., Nelissen, H. & Ernst, W. H. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ. 27(7), 828–839 (2004).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Norton, G. J. et al. Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329(1–2), 139–153 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ghandilyan, A., Kutman, U. B., Kutman, B. Y., Cakmak, I. & Aarts, M. G. Genetic analysis of the effect of zinc deficiency on Arabidopsis growth and mineral concentrations. Plant Soil 361(1–2), 227–239 (2012).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Gu, R. et al. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor Appl Genet 128(9), 1777–1789 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Liu, J., Wu, B., Singh, R. P. & Velu, G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J. Cereal Sci. 88, 57–64 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Wang, C. et al. Genetic mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1; 1 as the putative causal gene for a molybdenum QTL qMo8. Mol. Genet. Genom. 295(2), 391–407 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Acuña-Galindo, M. A., Mason, R. E., Subramanian, N. K. & Hays, D. B. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 55(2), 477–492 (2015).

    Article 

    Google Scholar 

  • 21.

    Goffinet, B. & Gerber, S. Quantitative trait loci: a meta-analysis. Genetics 155(1), 463–473 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Veyrieras, J. B., Goffinet, B. & Charcosset, A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform. 8(1), 49 (2007).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Hanocq, E., Laperche, A., Jaminon, O., Lainé, A. L. & Le Gouis, J. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 114(3), 569–584 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Arcade, A. et al. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14), 2324–2326 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Sosnowski, O., Charcosset, A. & Joets, J. BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28(15), 2082–2083 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Li, W. T. et al. Meta-analysis of QTL associated with tolerance to abiotic stresses in barley. Euphytica 189(1), 31–49 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Wang, Y., Wang, Y., Wang, X. & Deng, D. Integrated meta-QTL and genome-wide association study analyses reveal candidate genes for maize yield. J. Plant Growth Regul. 39, 229–238 (2019).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Safdar, L. B. et al. Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Front Plant Sci 11, 70 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Yang, Y. et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor. Appl. Genet. https://doi.org/10.1007/s00122-021-03881-4 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Jin, T. et al. The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci. 63(3), 317–324 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Chardon, F. et al. QTL meta-analysis in Arabidopsis reveals an interaction between leaf senescence and resource allocation to seeds. J. Exp. Bot. 65(14), 3949–3962 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Martinez, A. K. et al. Yield QTLome distribution correlates with gene density in maize. Plant Sci. 242, 300–309 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Zhang, Y. et al. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci. Rep. 6, 33113 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Abdelraheem, A., Liu, F., Song, M. & Zhang, J. F. A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Mol. Genet. Genom. 292(6), 1221–1235 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Zhang, X., Shabala, S., Koutoulis, A., Shabala, L. & Zhou, M. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245(2), 283–295 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Avni, R. et al. Genome based meta-QTL analysis of grain weight in tetraploid wheat identifies rare alleles of GRF4 associated with larger grains. Genes 9(12), 636 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Izquierdo, P. et al. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 131(8), 1645–1658 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Islam, M., Ontoy, J. & Subudhi, P. K. Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants 8(2), 33 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Raza, Q., Riaz, A., Sabar, M., Atif, R. M. & Bashir, K. Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. Plant Sci. 288, 110214 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Chen, X., Yuan, L. & Ludewig, U. Natural genetic variation of seed micronutrients of Arabidopsis thaliana grown in Zinc-deficient and Zinc-amended soil. Front. Plant. Sci. 7, 1070 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Buescher, E. et al. Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PLoS ONE 5(6), e11081 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Ghandilyan, A. et al. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytol. 184(1), 180–192 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Ghandilyan, A. et al. A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J. Exp. Bot. 60(5), 1409–1425 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Waters, B. M. & Grusak, M. A. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol. 179(4), 1033–1047 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Hubert, S. & Hedgecock, D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics 168(1), 351–362 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Fishman, L., Kelly, A. J., Morgan, E. & Willis, J. H. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159(4), 1701–1716 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6, e251 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Löffler, M., Schön, C. C. & Miedaner, T. Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol. Breed. 23(3), 473–488 (2009).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Xu, Y., Li, P., Yang, Z. & Xu, C. Genetic mapping of quantitative trait loci in crops. Crop J. 5(2), 175–184 (2017).

    Article 

    Google Scholar 

  • 50.

    Gupta, P. K., Rustgi, S. & Kulwal, P. L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol. Biol. 57, 461–485 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11(7), 459–463 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90(1), 7–24 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Han, B. & Eskin, E. Interpreting meta-analyses of genome-wide association studies. PLoS Genet. 8(3), e1002555 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Asins, M. J., Bernet, G. P., Villalta, I. & Carbonell, E. A. QTL analysis in plant breeding. In Molecular Techniques in Crop Improvement (ed. Mohan Jain, S. & Brar, D.S.) 3–21 (Springer, Dordrecht, 2010).

  • 56.

    Serin, E. A. et al. Construction of a high-density genetic map from RNA-Seq data for an Arabidopsis bay-0× Shahdara RIL population. Front. Genet. 8, 201 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Flint, J. & Mackay, T. F. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19(5), 723–733 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Salvi, S. & Tuberosa, R. The crop QTLome comes of age. Curr. Opin. Biotechnol. 32, 179–185 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Gao, F., Robe, K., Gaymard, F., Izquierdo, E. & Dubos, C. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors?. Front. Plant. Sci. 10, 6 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Thomine, S., Lelièvre, F., Debarbieux, E., Schroeder, J. I. & Barbier-Brygoo, H. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 34(5), 685–695 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Lanquar, V., Lelièvre, F., Barbier-Brygoo, H. & Thomine, S. Regulation and function of AtNRAMP4 metal transporter protein. Soil Sci. Plant Nutr. 50, 1141–1150 (2004).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Lanquar, V. et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24(23), 4041–4051 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Colangelo, E. P. & Guerinot, M. L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16(12), 3400–3412 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Jakoby, M., Wang, H. Y., Reidt, W., Weisshaar, B. & Bauer, P. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 577(3), 528–534 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Yuan, Y. X., Zhang, J., Wang, D. W. & Ling, H. Q. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 15(8), 613–621 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Bauer, P., Ling, H. Q. & Guerinot, M. L. FIT, the FER-like iron deficiency induced transcription factor in Arabidopsis. Plant. Physiol. Biochem. 45(5), 260–261 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Schwarz, B. & Bauer, P. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures. J. Exp. Bot. 71(5), 1694–1705 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Guerinot, M. L. The ZIP family of metal transporters. Biochim. Biophys. Acta. Biomembr. 1465(1–2), 190–198 (2000).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Grotz, N. et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA. 95(12), 7220–7224 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Colangelo, E. P. & Guerinot, M. L. Put the metal to the petal: metal uptake and transport throughout plants. Curr. Opin. Plant Biol. 9(3), 322–330 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    van de Mortel, J. E. et al. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Talke, I. N., Hanikenne, M. & Krämer, U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 142(1), 148–1467 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Lin, Y. F. et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 182(2), 392–404 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Delhaize, E. et al. A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J. 51(2), 198–210 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Han, Y. et al. WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Plant Mol. Biol. 99(1–2), 149–159 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Sheng, Y. et al. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ. 42(3), 891–903 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Shaul, O. et al. Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J. 18(14), 3973–3980 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Berezin, I. et al. Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell. Rep. 27, 939–949 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Gaash, R. et al. Phylogeny and a structural model of plant MHX transporters. BMC Plant Biol. 13(1), 1–20 (2013).

    Article 
    CAS 

    Google Scholar 

  • 80.

    Grusak, M. A. & DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. 50, 133–161 (1999).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Garcia-Oliveira, A. L., Tan, L., Fu, Y. & Sun, C. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J. Integr. Plant. Biol. 51(1), 84–92 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Baxter, I. et al. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE 7(4), e35121 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Manickavelu, A. et al. Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS ONE 12(1), e0169416 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Hill, W. G. & Zhang, X. S. On the pleiotropic structure of the genotype–phenotype map and the evolvability of complex organisms. Genetics 190(3), 1131–1137 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Descalsota-Empleo, G. I. et al. Genetic mapping of QTL for agronomic traits and grain mineral elements in rice. Crop J. 7(4), 560–572 (2019).

    Article 

    Google Scholar 

  • 86.

    Getahun, B. B., Visser, R. G. & van der Linden, C. G. Identification of QTLs associated with nitrogen use efficiency and related traits in a diploid potato population. Am. J. Potato. Res. 97(2), 185–201 (2020).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Newton-Cheh, C. & Hirschhorn, J. N. Genetic association studies of complex traits: design and analysis issues. Mutat. Res.-Fund. Mol. M. 573(1–2), 54–69 (2005).

    CAS 
    Article 

    Google Scholar 

  • 88.

    König, I. R. Validation in genetic association studies. Brief. Bioinform. 12(3), 253–258 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 89.

    Raboy, V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 177(4), 281–296 (2009).

    CAS 
    Article 

    Google Scholar 

  • Source link