Preloader

Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting

  • 1.

    Raha, D., Hong, M. & Snyder, M. ChIP‐Seq: a method for global identification of regulatory elements in the genome. Curr. Protoc. Mol. Biol. https://doi.org/10.1002/0471142727.mb2119s91 (2010).

  • 2.

    Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article 

    Google Scholar 

  • 3.

    Song, L. & Crawford, G. E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.prot5384 (2010).

  • 4.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Reiter, F., Wienerroither, S. & Stark, A. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Morgunova, E. & Taipale, J. Structural perspective of cooperative transcription factor binding. Curr. Opin. Struct. Biol. 47, 1–8 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Sönmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267.e6 (2021).

    Article 

    Google Scholar 

  • 9.

    Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67, 411–422.e4 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Nabilsi, N. H. et al. Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma. Genome Res. 24, 329–339 (2014).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Krebs, A. R. Studying transcription factor function in the genome at molecular resolution. Trends Genet. https://doi.org/10.1016/j.tig.2021.03.008 (2021)

  • 17.

    Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Methods Prim. 1, 10 (2021).

    Article 

    Google Scholar 

  • 18.

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Levo, M. et al. Systematic investigation of transcription factor activity in the context of chromatin using massively parallel binding and expression assays. Mol. Cell 65, 604–617.e6 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Oberbeckmann, E. et al. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res. 29, 1996–2009 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M. B. QuasR: quantification and annotation of short reads in R. Bioinformatics 31, 1130–1132 (2015).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 

    Google Scholar 

  • 25.

    Barzaghi G, K. A. SingleMoleculeFootprinting. Analysis tools for Single Molecule Footprinting (SMF) data. R package version 1.0.0. (Bioconductor, 2021). https://doi.org/10.18129/B9.bioc.SingleMoleculeFootprinting

  • 26.

    Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1001 (2019)

  • 27.

    Puig, R. R. et al. UniBind: maps of high-confidence direct TF-DNA interactions across nine species. BMC Genomics https://doi.org/10.1186/s12864-021-07760-6 (2021).

  • 28.

    Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Domcke, S. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Nicola, N. A. & Babon, J. J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 26, 533–544 (2015).

    CAS 
    Article 

    Google Scholar 

  • 31.

    GuidoBarzaghi, S. M. & KrebsLab. Krebslabrep/SingleMoleculeFootprinting: SingleMoleculeFootprinting. Zenodo https://doi.org/10.5281/ZENODO.4767134 (2021).

  • Source link