Preloader

Genome-wide identification and characterization of functionally relevant microsatellite markers from transcription factor genes of Tea (Camellia sinensis (L.) O. Kuntze)

  • 1.

    Tautz, D. & Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Weber, J. L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. & Nevo, E. Microsatellites: genomic distribution, putative functions and mutationalmechanisms: a review. MolEcol 11, 2453–2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x (2002).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Parida, S. K., Dalal, V., Singh, N. K. & Mohapatra, T. Genic non-coding microsatellites in the ricegenome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genom. 10, 140 (2009).

    Google Scholar 

  • 5.

    Parida, S. K. et al. Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol. 10, 251 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Gujaria, N. et al. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicerarietinum L.). Theor. Appl. Genet. 122, 1577–89 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Maritin, T., Seth, P. R. & Sharma, R. K. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics. 113(1), 305–316. https://doi.org/10.1016/j.ygeno.2020.12.020 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Maritin, T., Seth, M. M., Seth, R. & Sharma, R. K. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Genomics 2, 106 (2020).

    Google Scholar 

  • 9.

    Singh, I. & Handique, A. Breeding for resistance to water stress in tea (Camellia sinensis L.). Two a Bud 40, 41–48 (1993).

    Google Scholar 

  • 10.

    Ellis, R. T. Tea. in Evolutionof Crop Plants 2nd edn, (eds Smart, J. & Simmonds, N. W.) 22–27 (Longman Scientific & Technical, 1995).

  • 11.

    Raina, S. N. et al. Genetic structure and diversity of India hybrid tea. Genet. Resour. Crop Evol. 59(7), 1527–1541 (2012).

    CAS 

    Google Scholar 

  • 12.

    Seth, R., Maritim, T. K., Parmar, R., & Sharma, R. K. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). Hortic. Res. 8(1), 1–19 (2021).

    Google Scholar 

  • 13.

    Liu, S. et al. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Mol Breed. 38, 59 (2018).

    Google Scholar 

  • 14.

    Sharma, R. K., Bhardwaj, P., Negi, R., Mohapatra, T. & Ahuja, P. S. Identification, characterization and utilisation of unigenes derived microsatellite markers in Tea (Camellia sinensis L.). BMC Plant Biol. 9, 53 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Sharma, H. et al. Identification and cross-species transferability of 112 novel unigene-derived microsatellite markers in tea (Camellia sinensis). Am. J. Bot. 6, 133–138 (2011).

    Google Scholar 

  • 16.

    Sun, B. et al. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1. Sci. Rep. 6, 32534 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 17.

    Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 18.

    Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance inmaize. Nature 386, 485–488 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 19.

    Century, K., Reuber, T. L. & Ratcliffe, O. J. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 147, 20–29 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Tiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeumvulgare L.). TeorAppl. Genet. 106, 411–422. https://doi.org/10.1007/s00122-002-1031-0 (2003).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Ma, J. Q. et al. Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plants Camellia sinensis (Theaceae). Am. J. Bot. 2, e153 (2010).

    Google Scholar 

  • 22.

    Tan, L. Q. et al. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS ONE 8(11), e81611. https://doi.org/10.1371/journal.pone.0081611 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 23.

    Wu, H. et al. Novo Characterization of leaf transcriptome using 454 sequencing and development of EST-SSR Markers in tea (Camellia sinensis). Plant MolBiol. Rep. 31, 524–538 (2013).

    CAS 

    Google Scholar 

  • 24.

    Chen, J. et al. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation. BMC Genom. 18, 211 (2017).

    Google Scholar 

  • 25.

    Hoffman, J. I. & Nichols, H. J. A novel approach for mining polymorphic microsatellite markers InSilico. PLoS ONE. 6, e23283 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Vukosavljev, M. et al. Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Mol. Ecol. Resour. 15, 17–27 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Kashi, Y. & King, D. G. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Chen, J. D. et al. The chromosome-scale genome reveals the evolution anddiversification after the recent tetraploidization event in tea plant. Hortic. Res. 7, 1–11 (2020).

    Google Scholar 

  • 29.

    Zhuang, J., Zhang, J., Hou, X.-L., Wang, F. & Xiong, A.-S. Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit. Rev. Plant Sci. 33, 225–237. https://doi.org/10.1080/07352689.2014.870420 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Slobodan, R., Diego, R. P., Ingo, D. & Bernd, M. R. PlnTFDB: an integrative plant transcription factor database. BMC Bioinf. 8, 42 (2007).

    Google Scholar 

  • 31.

    Sethy, N. K., Shokeen, B., Edwards, K. J. & Bhatia, S. Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicerarietinum L.) Theor. Appl. Genet. 112, 1416–28 (2006).

    CAS 

    Google Scholar 

  • 32.

    Udupa, S. M. & Baum, M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicerarietinum L.). Mol. Genet. Genom. 265, 1097–103 (2001).

    CAS 

    Google Scholar 

  • 33.

    Li, Y. C., Korol, A. B., Fahima, T. & Nevo, E. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Kujur, et al. Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res. 20(2013), 355–373 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Waits, L. P., Luikart, G. & Taberlet, P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10(1), 249–256 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Green, H. & Wang, N. Codon reiteration and the evolution of proteins. Proc. Natl. Acad. Sci. 91(10), 4298–4302 (1994).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 37.

    Kumar, A. S., Sowpati, D. T. & Mishra, R. K. Single amino acid repeats in the proteome world: structural, functional, and evolutionary insights. PLoS ONE 11(11), e0166854. https://doi.org/10.1371/journal.pone.01 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Zhang, Z. & Xue, Q. Tri-nucleotide repeats and their association with genes in rice genome. Biosystems 82, 248–256 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–57 (1969).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 40.

    Li, Y. C. et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453–65 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Unamba, C. I., Nag, A., & Sharma, R. K. Next generation sequencing technologies: the doorway to the unexplored genomics of non-Model plants. Front. Plant Sci. 6, 1074. https://doi.org/10.3389/fpls.2015.01074 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bhardwaj, P. et al. SSR marker based DNA fingerprinting and diversity assessment in superior tea germplasm cultivated in Western Himalaya. Proc. Indian Natl. Sci. Acad. 80, 157–162 (2014).

    Google Scholar 

  • 43.

    Guo, R. et al. Development and application of transcriptome-derived microsatellites in actinidiaeriantha (Actinidiaceae). Front. Plant Sci. 2, 109. https://doi.org/10.3389/fpls.2017.01383 (2017).

    Article 

    Google Scholar 

  • 44.

    Wu, H. B. et al. Largescale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol. Breed. 34, 1903–1915. https://doi.org/10.1007/s11032-014-0148-6 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Wu, J., Cai, C. F., Cheng, F. Y., Cui, F. L. & Zhou, H. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol. Breed. 34, 1853–1866. https://doi.org/10.1007/s11032-014-0144-x (2014).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Zheng, X. F. et al. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genom. 14, 490. https://doi.org/10.1186/1471-2164-14 (2013).

    CAS 
    Article 

    Google Scholar 

  • 47.

    You, Y. et al. Development and characterisation of EST-SSR markers by transcriptome sequencing in taro (Colocasiaesculenta (L.) Schoot). Mol. Breed. https://doi.org/10.1007/s11032-015-0307-4 (2015).

    Article 

    Google Scholar 

  • 48.

    Yan, X., Zhang, X., Lu, M., He, Y. & An, H. D. novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene 561, 54–62. https://doi.org/10.1016/j.gene.2015.02.05 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Li, D., Deng, Z., Qin, B., Liu, X. & Men, Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR Arg.markers in rubber tree (HeveabrasiliensisMuell). BMC Genom. 13, 192. https://doi.org/10.1186/1471-2164-13-192 (2012).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Dubey, H. et al. TeaMiD: a comprehensive database of simple sequence repeatmarkers of tea. Database https://doi.org/10.1093/database/baaa013 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Vaughn, et al. Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA 18, 368–384 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Varshney, R. K., Graner, A. & Sorrells, M. E. Genic microsatellite markers in plants: features and applications. TRENDS Biotechnol. 23, 48–55 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Parida, S. K. et al. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. Front. Plant Sci. 6, 645. https://doi.org/10.3389/fpls.2015.00645 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Zao, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. FunctIntegr. Genom. 13, 75–98 (2013).

    Google Scholar 

  • 55.

    Jayaswall, K. et al. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze). Sci. Rep. 6, 30412 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 56.

    Seth, R. et al. Global transcriptional insights of pollen-pistil interactions commencing self-incompatibility and fertilization in tea [Camellia sinensis (L.) O. Kuntze]. Int. J. Mol. Sci. 20, 539 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 57.

    Wang, Y. et al. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. BiologiaPlantarum 60(3), 443–451 (2016).

    CAS 

    Google Scholar 

  • 58.

    Parmar, R. et al. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci. Rep. 9, 7487 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 59.

    Wu, Z. J. et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol. Genet. Genom. 291, 255–269 (2016).

    CAS 

    Google Scholar 

  • 60.

    Thirugnanasambantham, K. et al. Analysis of Dormant Bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. ApplBiochemBiotechnol 169, 1405–1417 (2013).

    CAS 

    Google Scholar 

  • 61.

    Spitz, F. & Furlong, E. E. Transcription factors: From enhancer binding to developmental control. Nat. Rev. Gene 13, 613–626 (2012).

    CAS 

    Google Scholar 

  • 62.

    Young, E. T., Sloan, J. S. & van Riper, K. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154, 1053–1068 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Fujimori, S. et al. A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett. 554, 17–22 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Scott, K. D. et al. Analysis of SSRs derived from grape ESTs. TheorAppl Genet. 100, 723–726 (2000).

    CAS 

    Google Scholar 

  • 65.

    Ellegren, H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genet. 24, 400–402 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Miao, Y. et al. Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipaedulis. Front. Plant Sci. 7, 409 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    McCouch, S. R. et al. Development and mapping of 2240 new SSR markers for rice Oryzasativa L.). DNA Res. 9, 199–207 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Wierdl, M., Dominska, M. & Petes, T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769–779 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Harr, B. & Schlotterer, C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155, 1213–1220 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Xu, X., Peng, M., Fang, Z. & Xu, X. The direction of microsatellite mutations is dependent upon allele length. Nat. Genet. 24, 396–399 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res. 10, 967–981 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Yao, M. Z. et al. Diversity distribution and population structure of tea germplasm in China revealed by EST-SSR markers. Tree Genet. Genom. 8, 205–220 (2012).

    Google Scholar 

  • 73.

    Tan, L. Q. et al. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8, e81611 (2013).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 74.

    Tan, L. Q. et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genet. Genomes 11(5), 1–12 (2015).

    Google Scholar 

  • 75.

    Singh, S. et al. Germplasm appraisal of western Himalayan tea: a breeding strategy for yield and quality improvement. Genet. Resour. Crop Evol. 60(4), 1501–1513 (2013).

    Google Scholar 

  • 76.

    Fang, W., Cheng, H., Duan, Y., Jiang, X. & Li, X. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst. Evol. 298(2), 469–483 (2012).

    Google Scholar 

  • 77.

    Yao, M. Z., Ma, C. L., Qiao, T. T., Jin, J. Q. & Chen, L. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genom. 8(1), 205–220 (2012).

    Google Scholar 

  • 78.

    Ma, J. Q. et al. Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping. Sci. Hortic. 134, 167–175 (2012).

    CAS 

    Google Scholar 

  • 79.

    Russell, J. et al. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley. Genome 47, 389–398 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Metzgar, et al. Selection against frameshift mutations limits microsatellite expansion in the coding DNA. Genome Res. 10, 72–80 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Katti, M. V., Ranjekar, P. K. & Gupta, V. S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18, 1161–1167 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Li, Y. C., Korol, A. B., Fahima, T. & Nevo, E. Microsatellites within Genes: structure, function, and evolution. Mol. Biol. Evol. 21(6), 991–1007. https://doi.org/10.1093/molbev/msh073 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    Maia, L. C., Souza, V. Q., Kopp, M. M., Carvalho, F. I. F. & Oliveira, A. C. Tandem repeat distribution of gene transcripts in three plant families. Genet. Mol. Biol. 32(4), 1–12 (2009).

    Google Scholar 

  • 84.

    Ghawana, S. et al. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes 4(1), 85 (2001).

    Google Scholar 

  • 85.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Smoot, M. E. et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Patel, R. K. & Jain, M. NGS QC toolkit: a tool for quality control of next generation sequencing data. PloS One 7, e30619 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 88.

    Liu, K. & Muse, S. V. Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Perrier, X., Jacquemoud-Collet, J. P. DARwin software: dissimilarity analysis and representation for windows. http://darwin.cirad.fr/Darwin (2006).

  • 90.

    Biswas, M. K. Transcriptome wide SSR discoverycross-taxa transferabilityand development of markerdatabase for studying geneticdiversity population structureofLilium species. Sci. Rep. 10, 18621. https://doi.org/10.1038/s41598-020-75553-0 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 91.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in. Excel Population genetic software for teaching and research–an update. Bioinformatics 28, 25372539 (2012).

    Google Scholar 

  • Source link