Tautz, D. & Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138 (1984).
Google Scholar
Weber, J. L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).
Google Scholar
Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. & Nevo, E. Microsatellites: genomic distribution, putative functions and mutationalmechanisms: a review. MolEcol 11, 2453–2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x (2002).
Google Scholar
Parida, S. K., Dalal, V., Singh, N. K. & Mohapatra, T. Genic non-coding microsatellites in the ricegenome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genom. 10, 140 (2009).
Parida, S. K. et al. Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol. 10, 251 (2010).
Google Scholar
Gujaria, N. et al. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicerarietinum L.). Theor. Appl. Genet. 122, 1577–89 (2011).
Google Scholar
Maritin, T., Seth, P. R. & Sharma, R. K. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics. 113(1), 305–316. https://doi.org/10.1016/j.ygeno.2020.12.020 (2020).
Google Scholar
Maritin, T., Seth, M. M., Seth, R. & Sharma, R. K. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Genomics 2, 106 (2020).
Singh, I. & Handique, A. Breeding for resistance to water stress in tea (Camellia sinensis L.). Two a Bud 40, 41–48 (1993).
Ellis, R. T. Tea. in Evolutionof Crop Plants 2nd edn, (eds Smart, J. & Simmonds, N. W.) 22–27 (Longman Scientific & Technical, 1995).
Raina, S. N. et al. Genetic structure and diversity of India hybrid tea. Genet. Resour. Crop Evol. 59(7), 1527–1541 (2012).
Google Scholar
Seth, R., Maritim, T. K., Parmar, R., & Sharma, R. K. Underpinning the molecular programming attributing heat stress associated thermotolerance in tea (Camellia sinensis (L.) O. Kuntze). Hortic. Res. 8(1), 1–19 (2021).
Liu, S. et al. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Mol Breed. 38, 59 (2018).
Sharma, R. K., Bhardwaj, P., Negi, R., Mohapatra, T. & Ahuja, P. S. Identification, characterization and utilisation of unigenes derived microsatellite markers in Tea (Camellia sinensis L.). BMC Plant Biol. 9, 53 (2009).
Google Scholar
Sharma, H. et al. Identification and cross-species transferability of 112 novel unigene-derived microsatellite markers in tea (Camellia sinensis). Am. J. Bot. 6, 133–138 (2011).
Sun, B. et al. Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1. Sci. Rep. 6, 32534 (2016).
Google Scholar
Konishi, S. et al. An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396 (2006).
Google Scholar
Doebley, J., Stec, A. & Hubbard, L. The evolution of apical dominance inmaize. Nature 386, 485–488 (1997).
Google Scholar
Century, K., Reuber, T. L. & Ratcliffe, O. J. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 147, 20–29 (2008).
Google Scholar
Tiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeumvulgare L.). TeorAppl. Genet. 106, 411–422. https://doi.org/10.1007/s00122-002-1031-0 (2003).
Google Scholar
Ma, J. Q. et al. Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plants Camellia sinensis (Theaceae). Am. J. Bot. 2, e153 (2010).
Tan, L. Q. et al. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS ONE 8(11), e81611. https://doi.org/10.1371/journal.pone.0081611 (2013).
Google Scholar
Wu, H. et al. Novo Characterization of leaf transcriptome using 454 sequencing and development of EST-SSR Markers in tea (Camellia sinensis). Plant MolBiol. Rep. 31, 524–538 (2013).
Google Scholar
Chen, J. et al. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation. BMC Genom. 18, 211 (2017).
Hoffman, J. I. & Nichols, H. J. A novel approach for mining polymorphic microsatellite markers InSilico. PLoS ONE. 6, e23283 (2011).
Google Scholar
Vukosavljev, M. et al. Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Mol. Ecol. Resour. 15, 17–27 (2015).
Google Scholar
Kashi, Y. & King, D. G. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259 (2006).
Google Scholar
Chen, J. D. et al. The chromosome-scale genome reveals the evolution anddiversification after the recent tetraploidization event in tea plant. Hortic. Res. 7, 1–11 (2020).
Zhuang, J., Zhang, J., Hou, X.-L., Wang, F. & Xiong, A.-S. Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit. Rev. Plant Sci. 33, 225–237. https://doi.org/10.1080/07352689.2014.870420 (2014).
Google Scholar
Slobodan, R., Diego, R. P., Ingo, D. & Bernd, M. R. PlnTFDB: an integrative plant transcription factor database. BMC Bioinf. 8, 42 (2007).
Sethy, N. K., Shokeen, B., Edwards, K. J. & Bhatia, S. Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicerarietinum L.) Theor. Appl. Genet. 112, 1416–28 (2006).
Google Scholar
Udupa, S. M. & Baum, M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicerarietinum L.). Mol. Genet. Genom. 265, 1097–103 (2001).
Google Scholar
Li, Y. C., Korol, A. B., Fahima, T. & Nevo, E. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007 (2004).
Google Scholar
Kujur, et al. Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res. 20(2013), 355–373 (2013).
Google Scholar
Waits, L. P., Luikart, G. & Taberlet, P. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10(1), 249–256 (2001).
Google Scholar
Green, H. & Wang, N. Codon reiteration and the evolution of proteins. Proc. Natl. Acad. Sci. 91(10), 4298–4302 (1994).
Google Scholar
Kumar, A. S., Sowpati, D. T. & Mishra, R. K. Single amino acid repeats in the proteome world: structural, functional, and evolutionary insights. PLoS ONE 11(11), e0166854. https://doi.org/10.1371/journal.pone.01 (2016).
Google Scholar
Zhang, Z. & Xue, Q. Tri-nucleotide repeats and their association with genes in rice genome. Biosystems 82, 248–256 (2005).
Google Scholar
Britten, R. J. & Davidson, E. H. Gene regulation for higher cells: a theory. Science 165, 349–57 (1969).
Google Scholar
Li, Y. C. et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453–65 (2002).
Google Scholar
Unamba, C. I., Nag, A., & Sharma, R. K. Next generation sequencing technologies: the doorway to the unexplored genomics of non-Model plants. Front. Plant Sci. 6, 1074. https://doi.org/10.3389/fpls.2015.01074 (2015).
Google Scholar
Bhardwaj, P. et al. SSR marker based DNA fingerprinting and diversity assessment in superior tea germplasm cultivated in Western Himalaya. Proc. Indian Natl. Sci. Acad. 80, 157–162 (2014).
Guo, R. et al. Development and application of transcriptome-derived microsatellites in actinidiaeriantha (Actinidiaceae). Front. Plant Sci. 2, 109. https://doi.org/10.3389/fpls.2017.01383 (2017).
Google Scholar
Wu, H. B. et al. Largescale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol. Breed. 34, 1903–1915. https://doi.org/10.1007/s11032-014-0148-6 (2014).
Google Scholar
Wu, J., Cai, C. F., Cheng, F. Y., Cui, F. L. & Zhou, H. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol. Breed. 34, 1853–1866. https://doi.org/10.1007/s11032-014-0144-x (2014).
Google Scholar
Zheng, X. F. et al. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genom. 14, 490. https://doi.org/10.1186/1471-2164-14 (2013).
Google Scholar
You, Y. et al. Development and characterisation of EST-SSR markers by transcriptome sequencing in taro (Colocasiaesculenta (L.) Schoot). Mol. Breed. https://doi.org/10.1007/s11032-015-0307-4 (2015).
Google Scholar
Yan, X., Zhang, X., Lu, M., He, Y. & An, H. D. novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene 561, 54–62. https://doi.org/10.1016/j.gene.2015.02.05 (2015).
Google Scholar
Li, D., Deng, Z., Qin, B., Liu, X. & Men, Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR Arg.markers in rubber tree (HeveabrasiliensisMuell). BMC Genom. 13, 192. https://doi.org/10.1186/1471-2164-13-192 (2012).
Google Scholar
Dubey, H. et al. TeaMiD: a comprehensive database of simple sequence repeatmarkers of tea. Database https://doi.org/10.1093/database/baaa013 (2020).
Google Scholar
Vaughn, et al. Known and novel post-transcriptional regulatory sequences are conserved across plant families. RNA 18, 368–384 (2012).
Google Scholar
Varshney, R. K., Graner, A. & Sorrells, M. E. Genic microsatellite markers in plants: features and applications. TRENDS Biotechnol. 23, 48–55 (2005).
Google Scholar
Parida, S. K. et al. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. Front. Plant Sci. 6, 645. https://doi.org/10.3389/fpls.2015.00645 (2015).
Google Scholar
Zao, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. FunctIntegr. Genom. 13, 75–98 (2013).
Jayaswall, K. et al. Transcriptome Analysis Reveals Candidate Genes involved in Blister Blight defense in Tea (Camellia sinensis (L) Kuntze). Sci. Rep. 6, 30412 (2016).
Google Scholar
Seth, R. et al. Global transcriptional insights of pollen-pistil interactions commencing self-incompatibility and fertilization in tea [Camellia sinensis (L.) O. Kuntze]. Int. J. Mol. Sci. 20, 539 (2019).
Google Scholar
Wang, Y. et al. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. BiologiaPlantarum 60(3), 443–451 (2016).
Google Scholar
Parmar, R. et al. Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Sci. Rep. 9, 7487 (2019).
Google Scholar
Wu, Z. J. et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol. Genet. Genom. 291, 255–269 (2016).
Google Scholar
Thirugnanasambantham, K. et al. Analysis of Dormant Bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. ApplBiochemBiotechnol 169, 1405–1417 (2013).
Google Scholar
Spitz, F. & Furlong, E. E. Transcription factors: From enhancer binding to developmental control. Nat. Rev. Gene 13, 613–626 (2012).
Google Scholar
Young, E. T., Sloan, J. S. & van Riper, K. Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154, 1053–1068 (2000).
Google Scholar
Fujimori, S. et al. A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett. 554, 17–22 (2003).
Google Scholar
Scott, K. D. et al. Analysis of SSRs derived from grape ESTs. TheorAppl Genet. 100, 723–726 (2000).
Google Scholar
Ellegren, H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genet. 24, 400–402 (2000).
Google Scholar
Miao, Y. et al. Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipaedulis. Front. Plant Sci. 7, 409 (2016).
Google Scholar
McCouch, S. R. et al. Development and mapping of 2240 new SSR markers for rice Oryzasativa L.). DNA Res. 9, 199–207 (2002).
Google Scholar
Wierdl, M., Dominska, M. & Petes, T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769–779 (1997).
Google Scholar
Harr, B. & Schlotterer, C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155, 1213–1220 (2000).
Google Scholar
Xu, X., Peng, M., Fang, Z. & Xu, X. The direction of microsatellite mutations is dependent upon allele length. Nat. Genet. 24, 396–399 (2000).
Google Scholar
Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res. 10, 967–981 (2000).
Google Scholar
Yao, M. Z. et al. Diversity distribution and population structure of tea germplasm in China revealed by EST-SSR markers. Tree Genet. Genom. 8, 205–220 (2012).
Tan, L. Q. et al. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS One 8, e81611 (2013).
Google Scholar
Tan, L. Q. et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genet. Genomes 11(5), 1–12 (2015).
Singh, S. et al. Germplasm appraisal of western Himalayan tea: a breeding strategy for yield and quality improvement. Genet. Resour. Crop Evol. 60(4), 1501–1513 (2013).
Fang, W., Cheng, H., Duan, Y., Jiang, X. & Li, X. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst. Evol. 298(2), 469–483 (2012).
Yao, M. Z., Ma, C. L., Qiao, T. T., Jin, J. Q. & Chen, L. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet. Genom. 8(1), 205–220 (2012).
Ma, J. Q. et al. Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping. Sci. Hortic. 134, 167–175 (2012).
Google Scholar
Russell, J. et al. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley. Genome 47, 389–398 (2004).
Google Scholar
Metzgar, et al. Selection against frameshift mutations limits microsatellite expansion in the coding DNA. Genome Res. 10, 72–80 (2000).
Google Scholar
Katti, M. V., Ranjekar, P. K. & Gupta, V. S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18, 1161–1167 (2001).
Google Scholar
Li, Y. C., Korol, A. B., Fahima, T. & Nevo, E. Microsatellites within Genes: structure, function, and evolution. Mol. Biol. Evol. 21(6), 991–1007. https://doi.org/10.1093/molbev/msh073 (2004).
Google Scholar
Maia, L. C., Souza, V. Q., Kopp, M. M., Carvalho, F. I. F. & Oliveira, A. C. Tandem repeat distribution of gene transcripts in three plant families. Genet. Mol. Biol. 32(4), 1–12 (2009).
Ghawana, S. et al. An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res. Notes 4(1), 85 (2001).
Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676 (2005).
Google Scholar
Smoot, M. E. et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).
Google Scholar
Patel, R. K. & Jain, M. NGS QC toolkit: a tool for quality control of next generation sequencing data. PloS One 7, e30619 (2012).
Google Scholar
Liu, K. & Muse, S. V. Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129 (2005).
Google Scholar
Perrier, X., Jacquemoud-Collet, J. P. DARwin software: dissimilarity analysis and representation for windows. http://darwin.cirad.fr/Darwin (2006).
Biswas, M. K. Transcriptome wide SSR discoverycross-taxa transferabilityand development of markerdatabase for studying geneticdiversity population structureofLilium species. Sci. Rep. 10, 18621. https://doi.org/10.1038/s41598-020-75553-0 (2020).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in. Excel Population genetic software for teaching and research–an update. Bioinformatics 28, 25372539 (2012).

