Bandyopadhyay, T., Muthamilarasan, M. & Prasad, M. Millets for next generation climate-smart agriculture. Front. Plant Sci. 8, 1266 (2017).
Google Scholar
Vetriventhan, M. et al. Genetic and genomic resources, and breeding for accelerating improvement of small millets: Current status and future interventions. Nucleus 63, 1–23 (2020).
Google Scholar
Jones, J. Grain-based foods and health. Cereal Foods World 51, 108 (2006).
Google Scholar
Lata, C., Gupta, S. & Prasad, M. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Crit. Rev. Biotechnol. 33, 328–343 (2013).
Google Scholar
Upadhyaya, H. D., Vetriventhan, M., Dwivedi, S. L., Pattanashetti, S. K. & Singh, S. K. Genetic and Genomic Resources for Grain Cereals Improvement 321–343 (Elsevier, 2016).
Google Scholar
Hamid, R., Siahpoosh, M., Mamaghani, R. & Siahpoosh, A. Evaluation the genetic diversity of 10 milk thistle (Silybum marianum L.) ecotypes using morphological, phenological and phytochemical traits (2014).
Zarei, A., Zamani, Z. & Sarkhosh, A. Biodiversity, germplasm resources and breeding methods. In The Pomegranate: Botany, Production and Uses 94 (2020).
Sandhu, N. et al. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice 12, 1–16 (2019).
Google Scholar
Boopathi, N. M. Genetic Mapping and Marker Assisted Selection 107–178 (Springer, 2020).
Google Scholar
Rathod, V. et al. Peanut (Arachis hypogaea) transcriptome revealed the molecular interactions of the defense mechanism in response to early leaf spot fungi (Cercospora arachidicola). Plant Gene 23, 100243 (2020).
Google Scholar
Biswas, M. K. et al. Transcriptome wide SSR discovery cross-taxa transferability and development of marker database for studying genetic diversity population structure of Lilium species. Sci. Rep. 10, 1–13 (2020).
Google Scholar
Nadeem, M. A. et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32, 261–285 (2018).
Google Scholar
Rathod, V. et al. Comparative RNA-Seq profiling of a resistant and susceptible peanut (Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 10, 1–15 (2020).
Google Scholar
Cho, Y. G. et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100, 713–722 (2000).
Google Scholar
Zhang, M., Mao, W., Zhang, G. & Wu, F. Development and characterization of polymorphic EST-SSR and genomic SSR markers for Tibetan annual wild barley. PLoS ONE 9, e94881 (2014).
Google Scholar
Taheri, S. et al. De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci. Rep. 9, 1–14 (2019).
Hamid, R., Marashi, H., Tomar, R. S., Malekzadeh Shafaroudi, S. & Sabara, P. H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L.). PLoS ONE 14, e0218381 (2019).
Google Scholar
Ge, Y. et al. Transcriptome sequencing of different avocado ecotypes: De novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. Forests 10, 411 (2019).
Google Scholar
Mathi Thumilan, B. et al. Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS ONE 11, e0162909 (2016).
Google Scholar
Chen, H. et al. Development and validation of EST-SSR markers from the transcriptome of adzuki bean (Vigna angularis). PLoS ONE 10, e0131939 (2015).
Google Scholar
Sabu, K., Shehenaz, M. & Amrutha, J. Transcriptome mining for Est-Indels and development of EST-SSR markers in turmeric (Curcuma longa L.). Int. J. Agric., Environ. Biotechnol. 11, 487–491 (2018).
Tao, S.-Q., Cao, B., Tian, C.-M. & Liang, Y.-M. Development and characterization of novel genic-SSR markers in apple-Juniper rust pathogen Gymnosporangium yamadae (Pucciniales: Pucciniaceae) using next-generation sequencing. Int. J. Mol. Sci. 19, 1178 (2018).
Google Scholar
Hamid, R. et al. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 660, 80–91 (2018).
Google Scholar
Gupta, P. K. et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genom. 270, 315–323 (2003).
Google Scholar
Tulsani, N. J. et al. Transcriptome landscaping for gene mining and SSR marker development in coriander (Coriandrum sativum L.). Genomics 112, 1545–1553 (2020).
Google Scholar
Karcι, H., Paizila, A., Topçu, H., Ilikçioğlu, E. & Kafkas, S. Transcriptome sequencing and development of novel genic SSR markers from Pistacia vera L. Front. Genet. 11, 1021 (2020).
Google Scholar
Pedrini, S. & Dixon, K. W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 28, S286–S303 (2020).
Hamid, R., Jacob, F., Marashi, H., Rathod, V. & Tomar, R. S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 112, 3354–3364 (2020).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Bosamia, T. C., Mishra, G. P., Thankappan, R. & Dobaria, J. R. Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS ONE 10, e0129127 (2015).
Google Scholar
Parekh, M. J. et al. Development and validation of novel fiber relevant dbEST–SSR markers and their utility in revealing genetic diversity in diploid cotton (Gossypium herbaceum and G. arboreum). Ind. Crops Prod. 83, 620–629 (2016).
Google Scholar
Kristamtini, K., Taryono, T., Basunanda, P. & Murti, R. H. High resolution microsatellite marker analysis of some rice landraces using metaphor agarose gel electrophoresis. Indones. J. Biotechnol. 20, 54–61 (2016).
Google Scholar
Asif, M., Mirza, J. & Zafar, Y. High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pak. J. Agric. Sci. 45, 75–79 (2008).
Sánchez-Pérez, R., Ballester, J., Dicenta, F., Arús, P. & Martínez-Gómez, P. Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for the assessment of genetic diversity and relatedness in almond. Sci. Hortic. 108, 310–316 (2006).
Google Scholar
Weir, B. S. Genetic Data Analysis Methods for Discrete Population Genetic Data (Sinauer Associates, Inc. Publishers, 1990).
Rohlf, F. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis: Version 2.02 (Exeter Software, 1998).
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Meyer, S., Held, L. & Höhle, M. hhh4: Endemic-epidemic modeling of areal count time series. J. Stat. Softw. 1, 1–55 (2016).
Wickham, H. Elegant graphics for data analysis. Media 35, 10–1007 (2009).
Google Scholar
Sonah, H., Deshmukh, R., Sharma, A., Singh, V. & Gupta, D. Genome-wide distribution and organization of microsatellites in plants: An insight. PLoS ONE 6, e21298 (2011).
Google Scholar
Li, Y. et al. Benefiting others and self: Production of vitamins in plants. J. Integr. Plant Biol. 63, 210–227 (2021).
Google Scholar
Saleh, A. S. M. et al. Millet grains: nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12(3), 281–295 (2013).
Google Scholar
Devi, P. B., Vijayabharathi, R., Sathyabama, S., Malleshi, N. G. & Priyadarisini, V. B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 51, 1021–1040 (2014).
Google Scholar
De, L. Edible seeds and nuts in human diet for immunity development. Int. J. Recent Sci. Res. 6, 38877–38881 (2020).
Ramashia, S. E., Anyasi, T. A., Gwata, E. T., Meddows-Taylor, S. & Jideani, A. I. O. Processing, nutritional composition and health benefits of finger millet in sub-Saharan Africa. Food Sci. Technol. 39, 253–266 (2019).
Google Scholar
Singh, R. K. & Prasad, M. The Foxtail Millet Genome 63–75 (Springer, 2017).
Google Scholar
Huang, X. et al. De novo transcriptome analysis and molecular marker development of two Hemarthria species. Front. Plant Sci. 7, 496 (2016).
Google Scholar
Zhao, H. et al. High-throughput sequencing analysis reveals effects of short-term low-temperature storage on miRNA-mediated flavonoid accumulation in postharvest toon buds. Plant Gene 26, 100291 (2021).
Google Scholar
Zheng, X. et al. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genom. 14, 490 (2013).
Google Scholar
Wei, W. et al. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom. 12, 451 (2011).
Google Scholar
Zhang, W. et al. Characterization of flower-bud transcriptome and development of genic SSR markers in Asian lotus (Nelumbo nucifera Gaertn.). PLoS ONE 9, e112223 (2014).
Google Scholar
Varshney, R. et al. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113, 239 (2006).
Google Scholar
Peng, J. & Lapitan, N. L. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genom. 5, 80–96 (2005).
Google Scholar
Raju, N. L. et al. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol. 10, 45 (2010).
Google Scholar
Yang, Z., Peng, Z. & Yang, H. Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.). Genet. Mol. Res. 15, 15017509 (2016).
Zhai, L. et al. Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.). Mol. Breed. 33, 611–624 (2014).
Google Scholar
Tiwari, N., Tiwari, S. & Tripathi, N. Genetic characterization of Indian little millet (Panicum sumatrense) genotypes using random amplified polymorphic DNA markers. Agric. Nat. Resour. 52, 347–353 (2018).
Johnson, M., Deshpande, S., Vetriventhan, M., Upadhyaya, H. D. & Wallace, J. G. Genome-wide population structure analyses of three minor millets: Kodo millet, little millet, and proso millet. Plant Genome 12, 190021 (2019).
Google Scholar
Ali, A. et al. Development of EST-SSRs and assessment of genetic diversity in little millet (Panicum sumatrense) germplasm. Korean J. Plant Resour. 30, 287–297 (2017).
Das, R. R., Pradhan, S. & Parida, A. De-novo transcriptome analysis unveils differentially expressed genes regulating drought and salt stress response in Panicum sumatrense. Sci. Rep. 10, 1–14 (2020).
Google Scholar
Vendramin, E. et al. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol. Ecol. Notes 7, 307–310 (2007).
Google Scholar
Varshney, R. K., Graner, A. & Sorrells, M. E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 23, 48–55 (2005).
Google Scholar
Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. D. F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).
Google Scholar
Senthilvel, S. et al. Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol. 8, 1–9 (2008).
Google Scholar
Sonah, H. et al. Genome-wide distribution and organization of microsatellites in plants: An insight into marker development in Brachypodium. PLoS ONE 6, e21298 (2011).
Google Scholar
Temnykh, S. et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genom. Res. 11, 1441–1452 (2001).
Google Scholar
Xu, R., Wang, Z., Su, Y. & Wang, T. Characterization and development of microsatellite markers in Pseudotaxus chienii (Taxaceae) based on transcriptome sequencing. Front. Genet. 11, 1249 (2020).
Hina, F., Yisilam, G., Wang, S., Li, P. & Fu, C. D. novo transcriptome assembly, gene annotation and SSR marker development in the moon seed genus Menispermum (Menispermaceae). Front. Genet. 11, 380 (2020).
Google Scholar
You, Y. et al. Leaf transcriptome analysis and development of EST-SSR markers in arrowhead (Sagittaria trifolia L. var. Sinensis). Trop. Plant Biol. 13, 1–12 (2020).
Google Scholar
Colinas, M. & Fitzpatrick, T. B. Natures balancing act: Examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr. Opin. Plant Biol. 25, 98–106 (2015).
Google Scholar
Strobbe, S. & Van Der Straeten, D. Toward eradication of B-vitamin deficiencies: Considerations for crop biofortification. Front. Plant Sci. 9, 443 (2018).
Google Scholar

