Preloader

Genetically engineered and enucleated human mesenchymal stromal cells for the targeted delivery of therapeutics to diseased tissue

  • 1.

    Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Lyerly, H. K., Osada, T. & Hartman, Z. C. Right time and place for IL12: targeted delivery stimulates immune therapy. Clin. Cancer Res. 25, 9–11 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Fioranelli, M. & Roccia, M. G. Twenty-five years of studies and trials for the therapeutic application of IL-10 immunomodulating properties. From high doses administration to low dose medicine new paradigm. J. Integr. Cardiol. 1, 2–6 (2014).

    Google Scholar 

  • 5.

    Samanta, S. et al. Exosomes: new molecular targets of diseases. Acta Pharmacol. Sin. 39, 501–513 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Han, X., Wang, C. & Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chem. 29, 852–860 (2018).

    CAS 

    Google Scholar 

  • 7.

    Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Thanuja, M. Y., Anupama, C. & Ranganath, S. H. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv. Drug Deliv. Rev. 132, 57–80 (2018).

    CAS 

    Google Scholar 

  • 9.

    Labusca, L., Herea, D. D. & Mashayekhi, K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J. Stem Cells 10, 43–56 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Sackstein, R. The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 12, 444–450 (2005).

    PubMed 

    Google Scholar 

  • 11.

    Nitzsche, F. et al. Concise review: MSC adhesion cascade–insights into homing and transendothelial migration. Stem Cells 35, 1446–1460 (2017).

    PubMed 

    Google Scholar 

  • 12.

    Ullah, M., Liu, D. D. & Thakor, A. S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience 15, 421–438 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Fischer, U. M. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18, 683–692 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Karp, J. M. & Leng Teo, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Galipeau, J. & Sensebe, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22, 824–833 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Marks, P. W., Witten, C. M. & Califf, R. M. Clarifying stem-cell therapy’s benefits and risks. N. Engl. J. Med. 376, 1007–1009 (2017).

    PubMed 

    Google Scholar 

  • 17.

    Wigler, M. H. & Weinstein, I. B. A preparative method for obtaining enucleated mammalian cells. Biochem. Biophys. Res. Commun. 63, 669–674 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Shay, J. W. Cell enucleation, cybrids, reconstituted cells, and nuclear hybrids. Methods Enzymol. 151, 221–237 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Coimbra, V. C. et al. Enucleated L929 cells support invasion, differentiation, and multiplication of Trypanosoma cruzi parasites. Infect. Immun. 75, 3700–3706 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Graham, D. M. et al. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 217, 895–914 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Wolbank, S. et al. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng. Part A 15, 1843–1854 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Malawista, S. E., Van Blaricom, G. & Breitenstein, M. G. Cryopreservable neutrophil surrogates. Stored cytoplasts from human polymorphonuclear leukocytes retain chemotactic, phagocytic, and microbicidal function. J. Clin. Invest. 83, 728–732 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Keys, J., Windsor, A. & Lammerding, J. Assembly and use of a microfluidic device to study cell migration in confined environments. Methods Mol. Biol. 1840, 101–118 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Lammerding, J. Mechanics of the nucleus. Compr. Physiol. 1, 783–807 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Guilak, F., Tedrow, J. R. & Burgkart, R. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781–786 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell. Res. 314, 1892–1905 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Caille, N., Thoumine, O., Tardy, Y. & Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    PubMed 

    Google Scholar 

  • 28.

    Marquez-Curtis, L. A. & Janowska-Wieczorek, A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed. Res. Int. 2013, 561098 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Pandolfi, F. et al. Integrins: integrating the biology and therapy of cell–cell interactions. Clin. Ther. 39, 2420–2436 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Chigaev, A. et al. Real time analysis of the affinity regulation of alpha 4-integrin. The physiologically activated receptor is intermediate in affinity between resting and Mn(2+) or antibody activation. J. Biol. Chem. 276, 48670–48678 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Boltze, J. et al. The dark side of the force – constraints and complications of cell therapies for stroke. Front. Neurol. 6, 155 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Jung, J. W. et al. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy. Yonsei Med. J. 54, 1293–1296 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Bartosh, T. J. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl Acad. Sci. USA 107, 13724–13729 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Levy, O. et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 122, e23–e32 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Gordon, S. et al. Antigen markers of macrophage differentiation in murine tissues. Curr. Top. Microbiol. Immunol. 181, 1–37 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Devine, M. J., Mierisch, C. M., Jang, E., Anderson, P. C. & Balian, G. Transplanted bone marrow cells localize to fracture callus in a mouse model. J. Orthop. Res. 20, 1232–1239 (2002).

    PubMed 

    Google Scholar 

  • 37.

    Ignowski, J. M. & Schaffer, D. V. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol. Bioeng. 86, 827–834 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Alvarez, H. M. et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab. Dispos. 40, 360–373 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Greenberg, J. A. et al. Clinical practice guideline: management of acute pancreatitis. Can. J. Surg. 59, 128–140 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Forsmark, C. E., Vege, S. S. & Wilcox, C. M. Acute Pancreatitis. N. Engl. J. Med. 375, 1972–1981 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Niederau, C., Ferrell, L. D. & Grendell, J. H. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88, 1192–1204 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Su, K. H., Cuthbertson, C. & Christophi, C. Review of experimental animal models of acute pancreatitis. HPB 8, 264–286 (2006).

    PubMed 

    Google Scholar 

  • 43.

    Rongione, A. J. et al. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology 112, 960–967 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    van Laethem, J. L. et al. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 108, 1917–1922 (1995).

    PubMed 

    Google Scholar 

  • 45.

    Fedorak, R. N. et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119, 1473–1482 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Nowakowski, A., Andrzejewska, A., Janowski, M., Walczak, P. & Lukomska, B. Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol. Exp. 73, 1–18 (2013).

    Google Scholar 

  • 47.

    Cui, L. L. et al. The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res. Ther. 6, 11 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Krueger, T. E. G., Thorek, D. L. J., Denmeade, S. R., Isaacs, J. T. & Brennen, W. N. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl. Med. 7, 651–663 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Yin, J. Q., Zhu, J. & Ankrum, J. A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 3, 90–104 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Ungerechts, G. et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol. Ther. Methods Clin. Dev. 3, 16018 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Chen, H., Marino, S. & Ho, C. Y. 97. Large scale purification of AAV with continuous flow ultracentrifugation. Mol. Ther. 24, S42 (2016).

    Google Scholar 

  • 52.

    Vazquez-Lombardi, R., Roome, B. & Christ, D. Molecular engineering of therapeutic cytokines. Antibodies 2, 426–451 (2013).

    Google Scholar 

  • 53.

    Wigler, M. H., Neugut, A. I. & Weinstein, I. B. Enucleation of mammalian cells in suspension. Methods Cell. Biol. 14, 87–93 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Bartosh, T. J. & Ylostalo, J. H. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr. Protoc. Stem Cell Biol. 28, Unit 2B.6 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Frith, J. E., Thomson, B. & Genever, P. G. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng. Part C. Methods 16, 735–749 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Egger, D., Tripisciano, C., Weber, V., Dominici, M. & Kasper, C. Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering 5, 48 (2018).

    PubMed Central 

    Google Scholar 

  • 57.

    Davidson, P. M., Sliz, J., Isermann, P., Denais, C. & Lammerding, J. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments. Integr. Biol. 7, 1534–1546 (2015).

    CAS 

    Google Scholar 

  • 58.

    Hyduk, S. J. et al. Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. J. Immunol. 187, 4360–4368 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Semon, J. A. et al. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels. Cell Tissue Res. 341, 147–158 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Quah, B. J., Warren, H. S. & Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2, 2049–2056 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Jing, D. et al. Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res. 28, 803–818 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Corradetti, B. et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci. Rep. 7, 7991 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link