Hughes, G. & Lewis, J. C. Introduction: Biocatalysis in industry. Chem. Rev. 118, 1–3. https://doi.org/10.1021/acs.chemrev.7b00741 (2018).
Google Scholar
Woodley, J. M. Accelerating the implementation of biocatalysis in industry. Appl. Microbiol. Biotechnol. 103, 4733–4739. https://doi.org/10.1007/s00253-019-09796-x (2019).
Google Scholar
Aalbers, F. S. & Fraaije, M. W. Enzyme fusions in biocatalysis: Coupling reactions by pairing enzymes. ChemBioChem 20, 20–28. https://doi.org/10.1002/cbic.201800394 (2019).
Google Scholar
Rabe, K. S., Müller, J., Skoupi, M. & Niemeyer, C. M. Cascades in compartments: En route to machine-assisted biotechnology. Angew. Chem. Int. Ed. Engl. 56, 13574–13589. https://doi.org/10.1002/anie.201703806 (2017).
Google Scholar
Ellis, G. A. et al. Artificial multienzyme scaffolds: Pursuing in vitro substrate channeling with an overview of current progress. ACS Catal. 9, 10812–10869. https://doi.org/10.1021/acscatal.9b02413 (2019).
Google Scholar
Belsare, K. D., Ruff, A. J., Martinez, R. & Schwaneberg, U. Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins. Biol. Chem. 401, 1249–1255. https://doi.org/10.1515/hsz-2020-0134 (2020).
Google Scholar
Bakkes, P. J. et al. Design and improvement of artificial redox modules by molecular fusion of flavodoxin and flavodoxin reductase from Escherichia coli. Sci. Rep. 5, 12158. https://doi.org/10.1038/srep12158 (2015).
Google Scholar
Chen, X., Zaro, J. L. & Shen, W.-C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039 (2013).
Google Scholar
Aalbers, F. S. & Fraaije, M. W. Coupled reactions by coupled enzymes: Alcohol to lactone cascade with alcohol dehydrogenase–cyclohexanone monooxygenase fusions. Appl. Microbiol. Biotechnol. 101, 7557–7565. https://doi.org/10.1007/s00253-017-8501-4 (2017).
Google Scholar
Peters, C., Rudroff, F., Mihovilovic, M. D. & Bornscheuer, U. T. Fusion proteins of an enoate reductase and a Baeyer–Villiger monooxygenase facilitate the synthesis of chiral lactones. Biol. Chem. 398, 31–37. https://doi.org/10.1515/hsz-2016-0150 (2017).
Google Scholar
Schulz, S., Schumacher, D., Raszkowski, D., Girhard, M. & Urlacher, V. B. Fusion to hydrophobin HFBI improves the catalytic performance of a cytochrome P450 system. Front. Bioeng. Biotechnol. 4, 57–57. https://doi.org/10.3389/fbioe.2016.00057 (2016).
Google Scholar
Bakkes, P. J. et al. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci. Rep. 7, 9570. https://doi.org/10.1038/s41598-017-10075-w (2017).
Google Scholar
Lerchner, A., Daake, M., Jarasch, A. & Skerra, A. Fusion of an alcohol dehydrogenase with an aminotransferase using a pas linker to improve coupled enzymatic alcohol-to-amine conversion. Protein Eng. Des. Sel. 29, 557–562. https://doi.org/10.1093/protein/gzw039 (2016).
Google Scholar
Sibbesen, O., De Voss, J. J. & Montellano, P. R. Putidaredoxin reductase-putidaredoxin-cytochrome P450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system. J. Biol. Chem. 271, 22462–22469. https://doi.org/10.1074/jbc.271.37.22462 (1996).
Google Scholar
Lu, P. & Feng, M. G. Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 79, 579–587. https://doi.org/10.1007/s00253-008-1468-4 (2008).
Google Scholar
Spivey, H. O. & Ovádi, J. Substrate channeling. Methods 19, 306–321. https://doi.org/10.1006/meth.1999.0858 (1999).
Google Scholar
Jorgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280–291. https://doi.org/10.1016/j.pbi.2005.03.014 (2005).
Google Scholar
Sweetlove, L. J. & Fernie, A. R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9, 2136–2136. https://doi.org/10.1038/s41467-018-04543-8 (2018).
Google Scholar
Zhang, Y., Tsitkov, S. & Hess, H. Proximity does not contribute to activity enhancement in the glucose oxidase–horseradish peroxidase cascade. Nat. Commun. 7, 13982. https://doi.org/10.1038/ncomms13982 (2016).
Google Scholar
Kuzmak, A., Carmali, S., von Lieres, E., Russell, A. J. & Kondrat, S. Can enzyme proximity accelerate cascade reactions?. Sci. Rep. 9, 455. https://doi.org/10.1038/s41598-018-37034-3 (2019).
Google Scholar
Poshyvailo, L., von Lieres, E. & Kondrat, S. Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?. PLoS One 12, e0172673. https://doi.org/10.1371/journal.pone.0172673 (2017).
Google Scholar
Jeon, E.-Y., Baek, A. H., Bornscheuer, U. T. & Park, J.-B. Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl. Microbiol. Biotechnol. 99, 6267–6275. https://doi.org/10.1007/s00253-015-6392-9 (2015).
Google Scholar
Iturrate, L., Sánchez-Moreno, I., Oroz-Guinea, I., Pérez-Gil, J. & García-Junceda, E. Preparation and characterization of a bifunctional aldolase/kinase enzyme: A more efficient biocatalyst for C–C bond formation. Chem. A Eur. J. 16, 4018–4030. https://doi.org/10.1002/chem.200903096 (2010).
Google Scholar
Mourelle-Insua, Á., Aalbers, F. S., Lavandera, I., Gotor-Fernández, V. & Fraaije, M. W. What to sacrifice? Fusions of cofactor regenerating enzymes with Baeyer–Villiger monooxygenases and alcohol dehydrogenases for self-sufficient redox biocatalysis. Tetrahedron 75, 1832–1839. https://doi.org/10.1016/j.tet.2019.02.015 (2019).
Google Scholar
Lau, P. C. K. et al. Sustained development in Baeyer–Villiger biooxidation technology. In Green Polymer Chemistry: Biocatalysis And Biomaterials vol. 1043 ACS Symposium Series Ch. 24, 343–372 (American Chemical Society, 2010).
Beyer, N. et al. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations. Appl. Microbiol. Biotechnol. 101, 2319–2331. https://doi.org/10.1007/s00253-016-7993-7 (2017).
Google Scholar
Noble, M. A. et al. Roles of key active-site residues in flavocytochrome P450 BM3. Biochem. J. 339(Pt 2), 371–379. https://doi.org/10.1042/bj3390371 (1999).
Google Scholar
Solé, J., Caminal, G., Schürmann, M., Álvaro, G. & Guillén, M. Co-immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a self-sufficient oxidative biocatalyst. J. Chem. Technol. Biotechnol. 94, 244–255. https://doi.org/10.1002/jctb.5770 (2019).
Google Scholar
Tan, C. Y., Hirakawa, H. & Nagamune, T. Supramolecular protein assembly supports immobilization of a cytochrome P450 monooxygenase system as water-insoluble gel. Sci. Rep. 5, 8648. https://doi.org/10.1038/srep08648 (2015).
Google Scholar
Maurer, S. C., Schulze, H., Schmid, R. D. & Urlacher, V. Immobilisation of P450 BM-3 and an NADP+ cofactor recycling system: Towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv. Synth. Catal. 345, 802–810. https://doi.org/10.1002/adsc.200303021 (2003).
Google Scholar
Tishkov, V. I. et al. Pilot scale production and isolation of recombinant NAD+– and NADP+-specific formate dehydrogenases. Biotechnol. Bioeng. 64, 187–193 (1999).
Google Scholar
Schwarz-Linek, U. et al. Synthesis of natural product precursors by Baeyer–Villiger oxidation with cyclohexanone monooxygenase from Acinetobacter. Synthesis 0947–0951, 2001. https://doi.org/10.1055/s-2001-13394 (2001).
Google Scholar
Rissom, S., Schwarz-Linek, U., Vogel, M., Tishkov, V. I. & Kragl, U. Synthesis of chiral ε-lactones in a two-enzyme system of cyclohexanone mono-oxygenase and formate dehydrogenase with integrated bubble-free aeration. Tetrahedron Asymmetry 8, 2523–2526. https://doi.org/10.1016/S0957-4166(97)00311-X (1997).
Google Scholar
Tishkov, V. I. & Popov, V. O. Protein engineering of formate dehydrogenase. Biomol. Eng. 23, 89–110. https://doi.org/10.1016/j.bioeng.2006.02.003 (2006).
Google Scholar
Alekseeva, A. A. et al. The role of Ala198 in the stability and coenzyme specificity of bacterial formate dehydrogenases. Acta Nat. 7, 60–69. https://doi.org/10.32607/20758251-2015-7-1-60-69 (2015).
Google Scholar
Zhang, Y., Wang, Y., Wang, S. & Fang, B. Engineering bi-functional enzyme complex of formate dehydrogenase and leucine dehydrogenase by peptide linker mediated fusion for accelerating cofactor regeneration. Eng. Life Sci. 17, 989–996. https://doi.org/10.1002/elsc.201600232 (2017).
Google Scholar
Hölsch, K. & Weuster-Botz, D. Enantioselective reduction of prochiral ketones by engineered bifunctional fusion proteins. Biotechnol. Appl. Biochem. 56, 131–140. https://doi.org/10.1042/BA20100143 (2010).
Google Scholar
Girvan, H. M. et al. Structural and spectroscopic characterization of P450 BM3 mutants with unprecedented P450 heme iron ligand sets. New heme ligation states influence conformational equilibria in P450 BM3. J. Biol. Chem. 282, 564–572. https://doi.org/10.1074/jbc.M607949200 (2007).
Google Scholar
Hecht, A. et al. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45, 3615–3626. https://doi.org/10.1093/nar/gkx070 (2017).
Google Scholar
Sührer, I., Haslbeck, M. & Castiglione, K. Asymmetric synthesis of a fluoxetine precursor with an artificial fusion protein of a ketoreductase and a formate dehydrogenase. Process Biochem. 49, 1527–1532. https://doi.org/10.1016/j.procbio.2014.06.001 (2014).
Google Scholar
Galkin, A., Kulakova, L., Tishkov, V., Esaki, N. & Soda, K. Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl. Microbiol. Biotechnol. 44, 479–483. https://doi.org/10.1007/bf00169947 (1995).
Google Scholar
Boddupalli, S. S., Pramanik, B. C., Slaughter, C. A., Estabrook, R. W. & Peterson, J. A. Fatty acid monooxygenation by P450BM-3: Product identification and proposed mechanisms for the sequential hydroxylation reactions. Arch. Biochem. Biophys. 292, 20–28. https://doi.org/10.1016/0003-9861(92)90045-X (1992).
Google Scholar
Urlacher, V. B., Makhsumkhanov, A. & Schmid, R. D. Biotransformation of β-ionone by engineered cytochrome P450 BM-3. Appl. Microbiol. Biotechnol. 70, 53–59. https://doi.org/10.1007/s00253-005-0028-4 (2006).
Google Scholar
Zehentgruber, D., Urlacher, V. B. & Lütz, S. Studies on the enantioselective oxidation of β-ionone with a whole E. coli system expressing cytochrome P450 monooxygenase BM3. J. Mol. Catal. B Enzym. 84, 62–64. https://doi.org/10.1016/j.molcatb.2012.05.014 (2012).
Google Scholar
Bernhardt, R. Cytochrome P450: Structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol. 127, 137–221. https://doi.org/10.1007/BFb0048267 (1996).
Google Scholar
Neeli, R. et al. The dimeric form of flavocytochrome P450 BM3 is catalytically functional as a fatty acid hydroxylase. FEBS Lett. 579, 5582–5588. https://doi.org/10.1016/j.febslet.2005.09.023 (2005).
Google Scholar
Munro, A. W., Gordon Lindsay, J., Coggins, J. R., Kelly, S. M. & Price, N. C. Analysis of the structural stability of the multidomain enzyme flavocytochrome P-450 BM3. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1296, 127–137. https://doi.org/10.1016/0167-4838(96)00061-1 (1996).
Google Scholar
Forneris, F., Orru, R., Bonivento, D., Chiarelli, L. R. & Mattevi, A. ThermoFAD, a Thermofluor®-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J. 276, 2833–2840. https://doi.org/10.1111/j.1742-4658.2009.07006.x (2009).
Google Scholar
Sadykhov, E. G. et al. A comparative study of the thermal stability of formate dehydrogenases from microorganisms and plants. Appl. Biochem. Microbiol. 42, 236–240. https://doi.org/10.1134/S0003683806030021 (2006).
Google Scholar
Jamakhandi, A. P., Jeffus, B. C., Dass, V. R. & Miller, G. P. Thermal inactivation of the reductase domain of cytochrome P450 BM3. Arch. Biochem. Biophys. 439, 165–174. https://doi.org/10.1016/j.abb.2005.04.022 (2005).
Google Scholar
Hummel, W. New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 58, 145–184. https://doi.org/10.1007/bfb0103304 (1997).
Google Scholar
Yang, H., Liu, L. & Xu, F. The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl. Microbiol. Biotechnol. 100, 8273–8281. https://doi.org/10.1007/s00253-016-7795-y (2016).
Google Scholar
Elleuche, S. Bringing functions together with fusion enzymes—From nature’s inventions to biotechnological applications. Appl. Microbiol. Biotechnol. 99, 1545–1556. https://doi.org/10.1007/s00253-014-6315-1 (2015).
Google Scholar
Jiang, W. & Fang, B.-S. Construction and evaluation of a novel bifunctional phenylalanine–formate dehydrogenase fusion protein for bienzyme system with cofactor regeneration. J. Ind. Microbiol. Biotechnol. 43, 577–584. https://doi.org/10.1007/s10295-016-1738-6 (2016).
Google Scholar
Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of n-terminal codon bias in bacterial genes. Science 342, 475–479. https://doi.org/10.1126/science.1241934 (2013).
Google Scholar
Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309. https://doi.org/10.1038/nchem.2459 (2016).
Google Scholar
Thomik, T., Wittig, I., Choe, J.-Y., Boles, E. & Oreb, M. An artificial transport metabolon facilitates improved substrate utilization in yeast. Nat. Chem. Biol. 13, 1158–1163. https://doi.org/10.1038/nchembio.2457 (2017).
Google Scholar
Lamzin, V. S., Dauter, Z., Popov, V. O., Harutyunyan, E. H. & Wilson, K. S. High resolution structures of holo and apo formate dehydrogenase. J. Mol. Biol. 236, 759–785. https://doi.org/10.1006/jmbi.1994.1188 (1994).
Google Scholar
Corrado, M. L., Knaus, T. & Mutti, F. G. A chimeric styrene monooxygenase with increased efficiency in asymmetric biocatalytic epoxidation. ChemBioChem 19, 679–686. https://doi.org/10.1002/cbic.201700653 (2018).
Google Scholar
Hollmann, F., Lin, P. C., Witholt, B. & Schmid, A. Stereospecific biocatalytic epoxidation: The first example of direct regeneration of a fad-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125, 8209–8217. https://doi.org/10.1021/ja034119u (2003).
Google Scholar
Kuper, J. et al. The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68, 1013–1017. https://doi.org/10.1107/S1744309112031570 (2012).
Google Scholar
Seng Wong, T., Arnold, F. H. & Schwaneberg, U. Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnol. Bioeng. 85, 351–358. https://doi.org/10.1002/bit.10896 (2004).
Google Scholar
Zhang, H. et al. The full-length cytochrome P450 enzyme CYP102A1 dimerizes at its reductase domains and has flexible heme domains for efficient catalysis. J. Biol. Chem. 293, 7727–7736. https://doi.org/10.1074/jbc.RA117.000600 (2018).
Google Scholar
Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239, 2379–2385. https://doi.org/10.1016/S0021-9258(20)82245-5 (1964).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1006/abio.1976.9999 (1976).
Google Scholar
Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J. & Schmid, R. D. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem. 269, 359–366. https://doi.org/10.1006/abio.1999.4047 (1999).
Google Scholar
Sekuzu, I., Orii, Y. & Okunuki, K. Studies on cytochrome C1*: I. Isolation, purification and properties of cytochrome C1 from heart muscle. J. Biochem. 48, 214–225. https://doi.org/10.1093/oxfordjournals.jbchem.a127162 (1960).
Google Scholar
Van Gelder, B. F. & Slater, E. C. The extinction coefficient of cytochrome c. Biochim. Biophys. Acta 58, 593–595. https://doi.org/10.1016/0006-3002(62)90073-2 (1962).
Google Scholar
Hummel, W. & Riebel, B. Alcohol dehydrogenase and its use for the enzymatic production of chiral hydroxy compounds. United States. US 6,225,099 B1 (1999).

