Herfarth, K. K. et al. Stereotactic single-dose radiation therapy of liver tumors: Results of a phase I/II trial. J. Clin. Oncol. 19, 164–170 (2001).
Google Scholar
Chao, K. S. C. et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: Impact of tumor volume. Int. J. Radiat. Oncol. Biol. Phys. 59, 43–50 (2004).
Google Scholar
Fayos, J. V. & Kim, Y. H. Radiation therapy of brain tumors. Cancer 45, 12–18 (1979).
Baskar, R., Lee, K. A., Yeo, R. & Yeoh, K. W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012).
Google Scholar
Delanian, S. & Lefaix, J. L. Current management for late normal tissue injury: Radiation-induced fibrosis and necrosis. Semin. Radiat. Oncol. 17, 99–107 (2007).
Google Scholar
Popanda, O., Marquardt, J. U., Chang-Claude, J. & Schmezer, P. Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutat. Res. Fundam. Mol. Mech. Mutagen. 667, 58–69 (2009).
Google Scholar
Citrin, D. et al. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15, 360–371 (2010).
Google Scholar
Hölscher, T., Bentzen, S. M. & Baumann, M. Influence of connective tissue diseases on the expression of radiation side effects: A systematic review. Radiother. Oncol. 78, 123–130 (2006).
Google Scholar
Dachs, G. U. & Chaplin, D. J. Microenvironmental control of gene expression: Implications for tumor angiogenesis, progression, and metastasis. Semin. Radiat. Oncol. 8, 208–216 (1998).
Google Scholar
Dvorak, H. F., Weaver, V. M., Tlsty, T. D. & Bergers, G. Tumor microenvironment and progression. J. Surg. Oncol. 103, 468–474 (2011).
Google Scholar
Neitzel, L. T., Neitzel, C. D., Magee, K. L. & Malafa, M. P. Angiogenesis correlates with metastasis in melanoma. Ann. Surg. Oncol. 6, 70–74 (1999).
Google Scholar
Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).
Google Scholar
Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926 (2017).
Google Scholar
Ritter, E. et al. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann. Surg. 247, 310–314 (2008).
Google Scholar
Tsuzuki, Y. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60, 6248–6252 (2000).
Google Scholar
Hendriksen, E. M. et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc. Res. 77, 96–103 (2009).
Google Scholar
Chouaib, S. et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front. Immunol. 3, 1–10 (2012).
Google Scholar
Hovinga, K. E. et al. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—A clue to radioresistance?. J. Neurooncol. 74, 99–103 (2005).
Google Scholar
Staehler, M. et al. Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int. 108, 673–678 (2011).
Google Scholar
Goedegebuure, R. S. A., De Klerk, L. K., Bass, A. J., Derks, S. & Thijssen, V. L. J. L. Combining radiotherapy with anti-angiogenic therapy and immunotherapy; A therapeutic triad for cancer?. Front. Immunol. 10, 1–15 (2019).
Google Scholar
Kim, K. S., Kim, J. E., Choi, K. J., Bae, S. & Kim, D. H. Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int. J. Radiat. Biol. 90, 71–80 (2014).
Google Scholar
Gabryś, D. et al. Radiation effects on the cytoskeleton of endothelial cells and endothelial monolayer permeability. Int. J. Radiat. Oncol. Biol. Phys. 69, 1553–1562 (2007).
Google Scholar
Wang, Y., Boerma, M. & Zhou, D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat. Res. 186, 153–161 (2016).
Google Scholar
Wagner-Ecker, M., Schwager, C., Wirkner, U., Abdollahi, A. & Huber, P. E. MicroRNA expression after ionizing radiation in human endothelial cells. Radiat. Oncol. 5, 1–10 (2010).
Google Scholar
Baselet, B., Sonveaux, P., Baatout, S. & Aerts, A. Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell. Mol. Life Sci. 76, 699–728 (2019).
Google Scholar
Kouam, P. N., Rezniczek, G. A., Adamietz, I. A. & Bühler, H. Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10-activation and subsequent degradation of VE-cadherin. BMC Cancer 19, 958 (2019).
Google Scholar
Wang, H. et al. Gamma radiation-induced disruption of cellular junctions in HUVECs is mediated through affecting MAPK/NF—κ B inflammatory pathways. Oxid. Med. Cell. Longev. 2019, 1–13 (2019).
Google Scholar
Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).
Google Scholar
Justice, B. A., Badr, N. A. & Felder, R. A. 3D cell culture opens new dimensions in cell-based assays. Drug Discov. Today 14, 102–107 (2009).
Google Scholar
Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).
Google Scholar
Han, S. et al. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci. Rep. https://doi.org/10.1038/srep18290 (2015).
Google Scholar
Jeong, G. S. et al. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal. Chem. 83, 8454–8459 (2011).
Google Scholar
Kihara, T., Ito, J. & Miyake, J. Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS ONE 8, e82382 (2013).
Google Scholar
Kluger, M. S., Clark, P. R., Tellides, G., Gerke, V. & Pober, J. S. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 489–500 (2013).
Google Scholar
Schnittler, H. et al. Actin filament dynamics and endothelial cell junctions: The Ying and Yang between stabilization and motion. Cell Tissue Res. 355, 529–543 (2014).
Google Scholar
Schnittler, H. J. et al. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. Eur. J. Physiol. 442, 675–687 (2001).
Google Scholar
Prasain, N. & Stevens, T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc. Res. 77, 53–63 (2009).
Google Scholar
Greene, C., Hanley, N. & Campbell, M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS 16, 1–15 (2019).
Google Scholar
Park, M. T., Oh, E. T., Song, M. J., Lee, H. & Park, H. J. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. J. Radiat. Res. 53, 570–580 (2012).
Google Scholar
Tsai, J. H. et al. Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol. Ther. 4, 1395–1400 (2005).
Google Scholar
Chen, W. et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J. Cell Commun. Signal. 13, 291–301 (2019).
Google Scholar
Blanco, R. & Gerhardt, H. VEGF and notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3, 1–19 (2013).
Google Scholar
Lobov, I. & Mikhailova, N. The role of Dll4/notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions. J. Ophthalmol. 2018, 1–8 (2018).
Google Scholar
Siekmann, A. F. & Lawson, N. D. Notch signalling and the regulation of angiogenesis. Cell Adhes. Migr. 1, 104–105 (2007).
Google Scholar
MacK, J. J. & Iruela-Arispe, M. L. NOTCH regulation of the endothelial cell phenotype. Curr. Opin. Hematol. 25, 212–218 (2018).
Google Scholar

