Preloader

Gamma irradiation exposure for collapsed cell junctions and reduced angiogenesis of 3-D in vitro blood vessels

  • 1.

    Herfarth, K. K. et al. Stereotactic single-dose radiation therapy of liver tumors: Results of a phase I/II trial. J. Clin. Oncol. 19, 164–170 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Chao, K. S. C. et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: Impact of tumor volume. Int. J. Radiat. Oncol. Biol. Phys. 59, 43–50 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Fayos, J. V. & Kim, Y. H. Radiation therapy of brain tumors. Cancer 45, 12–18 (1979).

    Google Scholar 

  • 4.

    Baskar, R., Lee, K. A., Yeo, R. & Yeoh, K. W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Delanian, S. & Lefaix, J. L. Current management for late normal tissue injury: Radiation-induced fibrosis and necrosis. Semin. Radiat. Oncol. 17, 99–107 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Popanda, O., Marquardt, J. U., Chang-Claude, J. & Schmezer, P. Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutat. Res. Fundam. Mol. Mech. Mutagen. 667, 58–69 (2009).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Citrin, D. et al. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15, 360–371 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Hölscher, T., Bentzen, S. M. & Baumann, M. Influence of connective tissue diseases on the expression of radiation side effects: A systematic review. Radiother. Oncol. 78, 123–130 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Dachs, G. U. & Chaplin, D. J. Microenvironmental control of gene expression: Implications for tumor angiogenesis, progression, and metastasis. Semin. Radiat. Oncol. 8, 208–216 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Dvorak, H. F., Weaver, V. M., Tlsty, T. D. & Bergers, G. Tumor microenvironment and progression. J. Surg. Oncol. 103, 468–474 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Neitzel, L. T., Neitzel, C. D., Magee, K. L. & Malafa, M. P. Angiogenesis correlates with metastasis in melanoma. Ann. Surg. Oncol. 6, 70–74 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Ritter, E. et al. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann. Surg. 247, 310–314 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Tsuzuki, Y. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60, 6248–6252 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hendriksen, E. M. et al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc. Res. 77, 96–103 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Chouaib, S. et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front. Immunol. 3, 1–10 (2012).

    Article 

    Google Scholar 

  • 18.

    Hovinga, K. E. et al. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—A clue to radioresistance?. J. Neurooncol. 74, 99–103 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Staehler, M. et al. Simultaneous anti-angiogenic therapy and single-fraction radiosurgery in clinically relevant metastases from renal cell carcinoma. BJU Int. 108, 673–678 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Goedegebuure, R. S. A., De Klerk, L. K., Bass, A. J., Derks, S. & Thijssen, V. L. J. L. Combining radiotherapy with anti-angiogenic therapy and immunotherapy; A therapeutic triad for cancer?. Front. Immunol. 10, 1–15 (2019).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Kim, K. S., Kim, J. E., Choi, K. J., Bae, S. & Kim, D. H. Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int. J. Radiat. Biol. 90, 71–80 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Gabryś, D. et al. Radiation effects on the cytoskeleton of endothelial cells and endothelial monolayer permeability. Int. J. Radiat. Oncol. Biol. Phys. 69, 1553–1562 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 23.

    Wang, Y., Boerma, M. & Zhou, D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat. Res. 186, 153–161 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Wagner-Ecker, M., Schwager, C., Wirkner, U., Abdollahi, A. & Huber, P. E. MicroRNA expression after ionizing radiation in human endothelial cells. Radiat. Oncol. 5, 1–10 (2010).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Baselet, B., Sonveaux, P., Baatout, S. & Aerts, A. Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell. Mol. Life Sci. 76, 699–728 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Kouam, P. N., Rezniczek, G. A., Adamietz, I. A. & Bühler, H. Ionizing radiation increases the endothelial permeability and the transendothelial migration of tumor cells through ADAM10-activation and subsequent degradation of VE-cadherin. BMC Cancer 19, 958 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Wang, H. et al. Gamma radiation-induced disruption of cellular junctions in HUVECs is mediated through affecting MAPK/NF—κ B inflammatory pathways. Oxid. Med. Cell. Longev. 2019, 1–13 (2019).

    CAS 

    Google Scholar 

  • 28.

    Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Justice, B. A., Badr, N. A. & Felder, R. A. 3D cell culture opens new dimensions in cell-based assays. Drug Discov. Today 14, 102–107 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Han, S. et al. Constructive remodeling of a synthetic endothelial extracellular matrix. Sci. Rep. https://doi.org/10.1038/srep18290 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Jeong, G. S. et al. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal. Chem. 83, 8454–8459 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Kihara, T., Ito, J. & Miyake, J. Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PLoS ONE 8, e82382 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Kluger, M. S., Clark, P. R., Tellides, G., Gerke, V. & Pober, J. S. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 489–500 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Schnittler, H. et al. Actin filament dynamics and endothelial cell junctions: The Ying and Yang between stabilization and motion. Cell Tissue Res. 355, 529–543 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Schnittler, H. J. et al. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. Eur. J. Physiol. 442, 675–687 (2001).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Prasain, N. & Stevens, T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc. Res. 77, 53–63 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Greene, C., Hanley, N. & Campbell, M. Claudin-5: Gatekeeper of neurological function. Fluids Barriers CNS 16, 1–15 (2019).

    Article 

    Google Scholar 

  • 39.

    Park, M. T., Oh, E. T., Song, M. J., Lee, H. & Park, H. J. Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. J. Radiat. Res. 53, 570–580 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Tsai, J. H. et al. Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol. Ther. 4, 1395–1400 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Chen, W. et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J. Cell Commun. Signal. 13, 291–301 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Blanco, R. & Gerhardt, H. VEGF and notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3, 1–19 (2013).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Lobov, I. & Mikhailova, N. The role of Dll4/notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions. J. Ophthalmol. 2018, 1–8 (2018).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Siekmann, A. F. & Lawson, N. D. Notch signalling and the regulation of angiogenesis. Cell Adhes. Migr. 1, 104–105 (2007).

    Article 

    Google Scholar 

  • 45.

    MacK, J. J. & Iruela-Arispe, M. L. NOTCH regulation of the endothelial cell phenotype. Curr. Opin. Hematol. 25, 212–218 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Source link