Preloader

Functional dissection of neural circuitry using a genetic reporter for fMRI

  • Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Belliveau, J. W. et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716–719 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, S., Maslov, K., Tsytsarev, V. & Wang, L. V. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14, 040503 (2009).

    PubMed 

    Google Scholar 

  • Mace, E. et al. Functional ultrasound imaging of the brain. Nat. Methods 8, 662–664 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Logothetis, N. K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 23, 3963–3971 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krawchuk, M. B., Ruff, C. F., Yang, X., Ross, S. E. & Vazquez, A. L. Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and cerebral blood flow regulation in mouse somato-sensory cortex. J. Cereb. Blood Flow. Metab. 40, 1427–1440 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Burke, M. & Buhrle, C. BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 32, 1–8 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Stefanovic, B., Schwindt, W., Hoehn, M. & Silva, A. C. Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase. J. Cereb. Blood Flow. Metab. 27, 741–754 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, L. & Zhu, D. Y. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20, 223–230 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. J. & Stull, J. T. Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase. J. Biol. Chem. 273, 27430–27437 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and ɑ1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Schmidt, K. et al. Comparison of neuronal and endothelial isoforms of nitric oxide synthase in stably transfected HEK 293 cells. Am. J. Physiol. Heart Circ. Physiol. 281, H2053–H2061 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Shi, Z. et al. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials. Proc. Natl. Acad. Sci. USA 114, 5253–5258 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, Q. et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS ONE 10, e0123381 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5, e19103 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mandelbaum, G. et al. Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron 102, 636–652 e637 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuber, G. D. & Wise, R. A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19, 198–205 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Madler, B. & Coenen, V. A. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry 73, 1204–1212 (2013).

    PubMed 

    Google Scholar 

  • Whiting, D. M. et al. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J. Neurosurg. 119, 56–63 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moisan, J. & Rompre, P. P. Electrophysiological evidence that a subset of midbrain dopamine neurons integrate the reward signal induced by electrical stimulation of the posterior mesencephalon. Brain Res. 786, 143–152 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, N. & Jasanoff, A. Local and global consequences of reward-evoked striatal dopamine release. Nature 580, 239–244 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okada, S. et al. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat. Nanotechnol. 13, 473–477 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, Y. G. et al. Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. 37, 73–83 (2018).

  • Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Adamantidis, A. R. et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829–10835 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bamford, N. S., Wightman, R. M. & Sulzer, D. Dopamine’s effects on corticostriatal synapses during reward-based behaviors. Neuron 97, 494–510 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buxton, R. B., Uludag, K., Dubowitz, D. J. & Liu, T. T. Modeling the hemodynamic response to brain activation. Neuroimage 23, S220–S233 (2004).

    PubMed 

    Google Scholar 

  • Picon-Pages, P., Garcia-Buendia, J. & Munoz, F. J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1949–1967 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hillman, E. M. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nippert, A. R., Biesecker, K. R. & Newman, E. A. Mechanisms mediating functional hyperemia in the brain. Neuroscientist 24, 73–83 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • D’Esposito, M., Deouell, L. Y. & Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat. Rev. Neurosci. 4, 863–872 (2003).

    PubMed 

    Google Scholar 

  • Jakobs, M., Fomenko, A., Lozano, A. M. & Kiening, K. L. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. EMBO Mol. Med. 11, e9575 (2019).

  • Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desai, M. et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J. Neurophysiol. 105, 1393–1405 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Lima, S. Q., Hromadka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE 4, e6099 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pautler, R. G. & Koretsky, A. P. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 16, 441–448 (2002).

    PubMed 

    Google Scholar 

  • Yoshimura, T. et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat. Biotechnol. 14, 992–994 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Reinhardt, C. J., Zhou, E. Y., Jorgensen, M. D., Partipilo, G. & Chan, J. A ratiometric acoustogenic probe for in vivo imaging of endogenous nitric oxide. J. Am. Chem. Soc. 140, 1011–1018 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barandov, A. et al. Molecular magnetic resonance imaging of nitric oxide in biological systems. ACS Sens. 5, 1674–1682 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G. & Konofagou, E. E. Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Ther. 22, 104–110 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szablowski, J. O., Lee-Gosselin, A., Lue, B., Malounda, D. & Shapiro, M. G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2, 475–484 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Leithner, C. et al. Pharmacological uncoupling of activation induced increases in CBF and CMRO2. J. Cereb. Blood Flow Metab. 30, 311–322 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Qi, Y., Wang, J. K. T., McMillian, M. & Chikaraishi, D. M. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17, 1217–1225 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kundu, P., Inati, S. J., Evans, J. W., Luh, W. M. & Bandettini, P. A. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage 60, 1759–1770 (2012).

    PubMed 

    Google Scholar 

  • Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Papp, E. A., Leergaard, T. B., Calabrese, E., Johnson, G. A. & Bjaalie, J. G. Waxholm Space atlas of the Sprague Dawley rat brain. Neuroimage 97, 374–386 (2014).

    PubMed 

    Google Scholar 

  • Kim, S.-Y. et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. USA 112, E6274–E6283 (2015).

  • Yun, D. H. et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/660373v1 (2019).

  • Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates, Compact Sixth Edition (Academic Press, 2009).

  • Source link