Preloader

Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice

  • Kotterman, M. A. & Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15, 445–451 (2014).

  • Keeler, A. M. & Flotte, T. R. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu. Rev. Virol. 6, 601–621 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L., Wang, H., Bell, P., Mcmenamin, D. & Wilson, J. M. Brief report hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum. Gene Ther. 23, 533–539 (2011).

  • Wang, L. et al. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). Mol. Ther. 19, 2012–2020 (2012).

  • Cunningham, S. C., Dane, A. P., Spinoulas, A. & Alexander, I. E. Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol. Ther. 16, 1081–1088 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Barzel, A. et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360–364 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Porro, F. et al. Promoterless gene targeting without nucleases rescues lethality of a Crigler–Najjar syndrome mouse model. EMBO Mol. Med. 9, 1346–1355 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hösel, M. et al. Autophagy determines efficiency of liver-directed gene therapy with adeno-associated viral vectors. Hepatology 66, 252–265 (2017).

    PubMed 

    Google Scholar 

  • Schreiber, C. A. et al. An siRNA screen identifies the U2 snRNP spliceosome as a host restriction factor for recombinant adeno-associated viruses. PLoS Pathog. 11, e1005082 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, J. S. & Samulski, R. J. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J. Virol. 83, 2632–2644 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Kia, A., Yata, T., Hajji, N. & Hajitou, A. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells. Viruses 5, 2561–2572 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Okada, T. et al. A histone deacetylase inhibitor enhances recombinant adeno-associated virus-mediated gene expression in tumor cells. Mol. Ther. 13, 738–746 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Russell, D. W., Alexander, I. E. & Miller, A. D. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc. Natl Acad. Sci. USA 92, 5719–5723 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicolson, S. C., Li, C., Hirsch, M. L., Setola, V. & Samulski, R. J. Identification and validation of small molecules that enhance recombinant adeno-associated virus transduction following high-throughput screens. J. Virol. 90, 7019–7031 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, L. et al. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J. Biol. Chem. 279, 12714–12723 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Marcus-Sekura, C. J. & Carter, B. J. Chromatin-like structure of adeno-associated virus DNA in infected cells. J. Virol. 48, 79–87 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Alencastro, G. et al. Improved genome editing through inhibition of FANCM and members of the BTR dissolvase complex. Mol. Ther. 29.3, 1016–1027 (2021).

    Google Scholar 

  • Aye, Y., Li, M., Long, M. J. C. & Weiss, R. S. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011–2021 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • De Caneva, A. et al. Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. JCI Insight 5, e128863. (2019).

  • Maurer-Schultze, B., Siebert, M. & Bassukas, I. D. An in vivo study on the synchronizing effect of hydroxyurea. Exp. Cell. Res. 174, 230–243 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Wongt, E. A. & Capecchi, M. R. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol. Cell Biol. 7, 2294–2295 (1987).

    Google Scholar 

  • Rothkamm, K., Krüger, I., Thompson, L. H., Löbrich, M. & Biophysik, F. Pathways of DNA double-strand break repair during the mammalian cell cycle the induction and repair of individual IR-induced DSBs. Mol. Cell. Biol. 23, 5706–5715 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heyer, W.-D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sandoval, A., Consoli, U., Plunkett, W. & Anderson, M. D. Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin. Cancer Res. 2, 1731–1741 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, P., Chubb, S. & Plunketts, W. Termination of DNA synthesis by 9-β-d-arabinofuranosyl-2-fluoroadenine. A mechanism for cytotoxicity. J. Biol. Chem. 265, 16617–16625 (1990).

  • Huang, P., Sandoval, A., Van Den Neste, E., Keating, M. J. & Plunkett, W. Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia 14, 1405–1413 (2000).

  • Pettitt, A. R. Mechanism of action of purine analogues in chronic lymphocytic leukaemia. Br. J. Haematol. 121, 692–702 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Tseng, W. C., Derse, D., Cheng, Y. C., Brockman, R. W. & Bennett, L. L. In vitro biological activity of 9-β-d-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol. Pharmacol. 21, 474–477 (1982).

  • Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Stoimenov, I., Gottipati, P., Schultz, N. & Helleday, T. Transcription inhibition by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) causes DNA damage and triggers homologous recombination repair in mammalian cells. Mutat. Res. 706, 1–6 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Den Engelse, L. & Philippus, E. J. In vivo repair of rat liver DNA damaged by dimethylnitrosamine or diethylnitrosamine. Chem. Biol. Interact. 19, 111–124 (1977).

    Google Scholar 

  • Ferrara, L., Parekh-Olmedo, H. & Kmiec, E. B. Enhanced oligonucleotide-directed gene targeting in mammalian cells following treatment with DNA damaging agents. Exp. Cell. Res. 300, 170–179 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Porteus, M. H., Cathomen, T., Weitzman, M. D. & Baltimore, D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23, 3558–3565 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P. & Pruett-Miller, S. M. A survey of validation strategies for CRISPR–Cas9 editing. Sci. Rep. 8, 888 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ju, H. Y., et al. Pharmacokinetics of fludarabine in pediatric hematopoietic stem cell transplantation. Blood 124, 2466–2466 (2014).

  • Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR–Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

  • Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16.2, 142–147 (2015).

    Google Scholar 

  • Vasileva, A., Linden, R. M. & Jessberger, R. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res. 34, 3345–3360 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, J. et al. RS-1 enhances CRISPR/Cas9-and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. et al. A high-throughput small molecule screen identifies farrerol as a potentiator of CRISPR/Cas9-mediated genome editing. eLife 9, e56008 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, T. et al. Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Res. 49, 8974–8986 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandler, R. J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Montini, E. et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 119, 964–975 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandler, R. J. et al. Promoterless, nuclease‐free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia. Hepatology 73, 2223–2237 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Trobridge, G., Hirata, R. K. & Russell, D. W. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum. Gene Ther. 16, 522–526 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Kohama, Y. et al. Adeno-associated virus-mediated gene delivery promotes S-phase entry-independent precise targeted integration in cardiomyocytes. Sci. Rep. 10, 15348 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, P. & Plunkett, W. Action of 9-β-d-arabinofuranosyl-2-fluoroadenine on RNA metabolism. Mol. Pharmacol. 39, 449–455 (1991).

  • Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Ji, J. H. et al. De novo phosphorylation of H2AX by WSTF regulates transcription-coupled homologous recombination repair. Nucleic Acids Res. 47, 6299–6314 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mano, M., Ippodrino, R., Zentilin, L., Zacchigna, S. & Giacca, M. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction. Proc. Natl Acad. Sci. USA 112, 11276–11281 (2015).

  • Cervelli, T. et al. Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins. J. Cell Sci. 121, 349–357 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Pekrun, K. et al. Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. JCI Insight 4, e131610 (2019).

    PubMed Central 

    Google Scholar 

  • Lu, J. et al. A 5′ noncoding exon containing engineered intron enhances transgene expression from recombinant AAV vectors in vivo. Hum. Gene Ther. 28, 125–134 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grimm, D., Pandey, K., Nakai, H., Storm, T. A. & Kay, M. A. Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J. Virol. 80, 426–439 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link