Preloader

Flexible Miniaturized Sensor Technologies for Long-Term Physiological Monitoring

  • Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS 

    Google Scholar 

  • Zhou, W., Fu, G. & Li, X. Detector-free photothermal bar-chart microfluidic chips (pt-chips) for visual quantitative detection of biomarkers. Anal. Chem. 93, 7754–7762 (2021).

    CAS 

    Google Scholar 

  • Prasad, K. S., Abugalyon, Y., Li, C., Xu, F. & Li, X. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 145, 5113–5117 (2020).

    CAS 

    Google Scholar 

  • Sanjay, S. T., Dou, M., Sun, J. & Li, X. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci. Rep. 6, 30474 (2016).

    CAS 

    Google Scholar 

  • Sanjay, S. T. et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140, 7062–7081 (2015).

    CAS 

    Google Scholar 

  • Ameri, S. K. et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017).

    Google Scholar 

  • Gilligan, B. J. et al. Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care. 17, 882–887 (1994).

    CAS 

    Google Scholar 

  • Gough, D. A., Lucisano, J. Y. & Tse, P. Two-dimensional enzyme electrode sensor for glucose. Anal. Chem. 57, 2351–2357 (1985).

    CAS 

    Google Scholar 

  • Phan, H. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 13, 11572–11581 (2019).

    CAS 

    Google Scholar 

  • Pei, K. et al. A high-performance optical memory array based on inhomogeneity of organic semiconductors. Adv. Mater. 30, 1706647 (2018).

    Google Scholar 

  • Husain, M. & Kennon, R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications. Fibers 1, 12–10 (2013).

    Google Scholar 

  • Kim, D. I. et al. A sensor array using multi-functional field-effect transistors with ultrahigh sensitivity and precision for bio-monitoring. Sci. Rep. 5, 12705 (2015).

    CAS 

    Google Scholar 

  • Huang, D. D. et al. Identification of bufavirus-1 and bufavirus-3 in feces of patients with acute diarrhea, china. Sci. Rep. 5, 13272 (2015).

    CAS 

    Google Scholar 

  • Ren, X. et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 28, 4832–4838 (2016).

    CAS 

    Google Scholar 

  • Yokota, T., Inoue, Y., Terakawa, Y. & Reeder, J. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. 112, 14533–14538 (2015).

    CAS 

    Google Scholar 

  • Cherenack, K., Zysset, C., Kinkeldei, T. & Münzenrieder, N. Wearable electronics: woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater. 22, 5071–5071 (2010).

    Google Scholar 

  • Lou, Z. et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 38, 28–35 (2017).

    CAS 

    Google Scholar 

  • Trung, T. Q. et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl. Mater. Interfaces 11, 2317–2327 (2019).

    CAS 

    Google Scholar 

  • Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    CAS 

    Google Scholar 

  • Bello, Y. M. & Phillips, T. J. Recent advances in wound healing. JAMA-J. Am. Med. Assoc. 283, 716–718 (2000).

    CAS 

    Google Scholar 

  • Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, N. Wound repair and regeneration. Nature 453, 314–321 (2008).

    CAS 

    Google Scholar 

  • Thet, N. T. et al. Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl. Mater. Interfaces 8, 14909–14919 (2016).

    CAS 

    Google Scholar 

  • Zhu, Y. et al. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30, 1905493 (2020).

    CAS 

    Google Scholar 

  • Zhang, Y. et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv. Healthc. Mater. 5, 119–127 (2016).

    CAS 

    Google Scholar 

  • Milne, S. D. et al. A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int. Wound J. 13, 1309–1314 (2016).

    Google Scholar 

  • Swisher, S. L. et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat. Commun. 6, 6575 (2015).

    Google Scholar 

  • Li, Z. et al. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomed. Opt. Express 5, 3748–3764 (2014).

    CAS 

    Google Scholar 

  • Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    CAS 

    Google Scholar 

  • Kassal, P. et al. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem. Commun. 56, 6–10 (2015).

    CAS 

    Google Scholar 

  • Panzarasa, G. et al. The pyranine-benzalkonium ion pair: A promising fluorescent system for the ratiometric detection of wound pH. Sens. Actuator B-Chem. 249, 156–160 (2017).

    CAS 

    Google Scholar 

  • Mostafalu, P. et al. Smart bandage for monitoring and treatment of chronic wounds. Small 14, 1703509 (2018).

    Google Scholar 

  • Gong, M. et al. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 29, 1902127 (2019).

    Google Scholar 

  • Schott, T. C. & Göz, G. Color fading of the blue compliance indicator encapsulated in removable clear Invisalign Teen® aligners. Angle Orthod. 81, 185–191 (2011).

    Google Scholar 

  • Tuncay, O. et al. Effectiveness of a compliance indicator for clear aligners. J. Clin. Orthod. 43, 263 (2009).

    Google Scholar 

  • Castle, E. et al. Compliance monitoring via a Bluetooth-enabled retainer: A prospective clinical pilot study. Orthod. Craniofac. Res. 22, 149–153 (2019).

    Google Scholar 

  • Kyriacou, P. A. & Jones, D. P. J. M. & Engineering, B. Computing compliance monitor for use with removable orthodontic headgear appliances. Med Biol. Eng. Comput. 35, 57–60 (1997).

    CAS 

    Google Scholar 

  • Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763–763 (2012).

    Google Scholar 

  • Igarashi, K., Kamiyama, K. & Yamada, T. Measurement of pH in human dental plaque in vivo with an ion-sensitive transistor electrode. Arch. Oral. Biol. 26, 203–207 (1981).

    CAS 

    Google Scholar 

  • Hansa, I., Semaan, S. J., Vaid, N. R. & Ferguson, D. J. Remote monitoring and “Tele-orthodontics”: Concept, scope and applications. Semin Orthod. 24, 470–481 (2018).

    Google Scholar 

  • Marathe, P. H., Gao, H. X. & Close, K. L. American diabetes association standards of medical care in diabetes 2017. J. Diabetes 9, 320 (2017).

    Google Scholar 

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 2593 (2016).

    Google Scholar 

  • Yetisen, A. K. et al. Dermal tattoo biosensors for colorimetric metabolite detection. Angew. Chem. -Int. Ed. 58, 10506–10513 (2019).

    CAS 

    Google Scholar 

  • Fu, G., Zhou, W. & Li, X. Remotely tunable microfluidic platform driven by nanomaterial-mediated on-demand photothermal pumping. Lab Chip 20, 2218–2227 (2020).

    CAS 

    Google Scholar 

  • Kim, K. B. et al. Mussel-inspired enzyme immobilization and dual real-time compensation algorithms for durable and accurate continuous glucose monitoring. Biosens. Bioelectron. 143, 111622 (2019).

    CAS 

    Google Scholar 

  • Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Google Scholar 

  • Martin, A. et al. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens. 2, 1860–1868 (2017).

    CAS 

    Google Scholar 

  • Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. Usa. 114, 4625–4630 (2017).

    CAS 

    Google Scholar 

  • Moyer, J. W. et al. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398–402 (2012).

    CAS 

    Google Scholar 

  • Ribet, F. et al. Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring. Biosens. Bioelectron. 90, 577–583 (2017).

    CAS 

    Google Scholar 

  • Valdesramirez, G. et al. Microneedle-based self-powered glucose sensor. Electrochem. Commun. 47, 58–62 (2014).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, 1701629 (2017).

    Google Scholar 

  • Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018).

    CAS 

    Google Scholar 

  • Duffield, R., Reid, M., Baker, J. & Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J. Sci. Med Sport. 13, 523–525 (2010).

    Google Scholar 

  • Johnston, R. J., Watsford, M. L., Pine, M. J., Spurrs, R. W. & Sporri, D. Assessment of 5 Hz and 10 Hz GPS units for measuring athlete movement demands. Int. J. Perform. Anal. Sport 13, 262–274 (2013).

    Google Scholar 

  • de Koning, J. J., Bobbert, M. F. & Foster, C. Determination of optimal pacing strategy in track cycling with an energy flow model. J. Sci. Med. Sport 2, 266–277 (1999).

    Google Scholar 

  • de Koning, J. J., Foster, C., Lampen, J., Hettinga, F. & Bobbert, M. F. Experimental evaluation of the power balance model of speed skating. J. Appl Physiol. 98, 227–233 (2005).

    Google Scholar 

  • Curto, V. F. et al. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuator B-Chem. 171-172, 1327–1334 (2012).

    CAS 

    Google Scholar 

  • Bandodkar, A. J. et al. Soft, skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat. Adv. Mater. 31, 1902109 (2019).

    Google Scholar 

  • Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014).

    CAS 

    Google Scholar 

  • Imani, S. et al. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650–11650 (2016).

    CAS 

    Google Scholar 

  • Waszkiewicz, N. et al. The influence of alcohol on the oral cavity, salivary glands and saliva. Pol. Merkur Lekarski. 30, 69–74 (2011).

    Google Scholar 

  • Jung, Y. et al. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl Opt. 54, 9183–9189 (2015).

    CAS 

    Google Scholar 

  • Rahman, M. R. et al. The application of power-generating fuel cell electrode materials and monitoring methods to breath alcohol sensors. Sens. Actuator B-Chem. 228, 448–457 (2016).

    CAS 

    Google Scholar 

  • Mohan, A. M. V., Windmiller, J. R., Mishra, R. K. & Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 91, 574–579 (2017).

    CAS 

    Google Scholar 

  • Kim, J. et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 5, 1800880 (2018).

    Google Scholar 

  • Venugopal, M. et al. Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring. IEEE Sens. J. 8, 71–80 (2008).

    CAS 

    Google Scholar 

  • Kim, J. et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 1, 1011–1019 (2016).

    CAS 

    Google Scholar 

  • Alessi, S. M., Barnett, N. P. & Petry, N. M. Experiences with SCRAMx alcohol monitoring technology in 100 alcohol treatment outpatients. Drug Alcohol Depend. 178, 417–424 (2017).

    Google Scholar 

  • Hair, M. E., Gerkman, R., Mathis, A. I., Halamkova, L. & Halamek, J. Noninvasive concept for optical ethanol sensing on the skin surface with camera-based quantification. Anal. Chem. 91, 15860–15865 (2019).

    CAS 

    Google Scholar 

  • Holt, S. & Tetrault, J. Unhealthy alcohol use. N. Engl. J. Med. 20, 429–444 (2016).

    Google Scholar 

  • Paton, A. Alcohol in the body. BMJ 330, 85–87 (2005).

    Google Scholar 

  • Caplan, Y. H. & Goldberger, B. A. Blood, urine, and other fluid and tissue specimens for alcohol analyses. Alcohol Tests 5, 202–215 (2008).

    Google Scholar 

  • Dolan, K., Rouen, D. & Kimber, J. An overview of the use of urine, hair, sweat and saliva to detect drug use. Drug Alcohol Rev. 23, 213–217 (2004).

    Google Scholar 

  • Edwards, R. The problem of tobacco smoking. BMJ 328, 217–219 (2004).

    Google Scholar 

  • Toll, B. A. et al. “Quitting smoking will benefit your health”: the evolution of clinician messaging to encourage tobacco cessation. Clin. Cancer Res. 20, 301–309 (2014).

    Google Scholar 

  • Imtiaz, M. H., Ramosgarcia, R. I., Wattal, S., Tiffany, S. T. & Sazonov, E. Wearable sensors for monitoring of cigarette smoking in free-living: a systematic review. Sens. (Basel). 19, 4678 (2019).

    Google Scholar 

  • Sazonov, E., Lopezmeyer, P. & Tiffany, S. A wearable sensor system for monitoring cigarette smoking. J. Stud. Alcohol Drugs 74, 956–964 (2013).

    Google Scholar 

  • Sazonov, E., Metcalfe, K., Lopezmeyer, P. & Tiffany, S. RF hand gesture sensor for monitoring of cigarette smoking. 2011 Fifth International Conference on Sensing Technology 426–430 (2011).

  • Jha, P. & Peto, R. Global effects of smoking, of quitting, and of taxing tobacco. N. Engl. J. Med. 370, 60–68 (2014).

    CAS 

    Google Scholar 

  • Tastanova, A. et al. Synthetic biology-based cellular biomedical tattoo for detection of hypercalcemia associated with cancer. Sci. Transl. Med. 10, 8562 (2018).

    Google Scholar 

  • Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018).

    Google Scholar 

  • Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 3, 1601984 (2017).

    Google Scholar 

  • Zhao, Y. et al. A wearable freestanding electrochemical sensing system. Sci. Adv. 6, 7 (2020).

    Google Scholar 

  • Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015).

    CAS 

    Google Scholar 

  • Yoo, H. G., Byun, M., Jeong, C. K. & Lee, K. Performance enhancement of electronic and energy devices via block copolymer self-assembly. Adv. Mater. 27, 3982–3998 (2015).

    CAS 

    Google Scholar 

  • Yao, G. et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9, 5349 (2018).

    CAS 

    Google Scholar 

  • Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Google Scholar 

  • Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 11, 9614–9635 (2017).

    CAS 

    Google Scholar 

  • Almuslem, A. S., Shaikh, S. F. & Hussain, M. M. Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 4, 1900145 (2019).

    Google Scholar 

  • Liu, H. et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater. Horiz. 7, 203–213 (2020).

    CAS 

    Google Scholar 

  • Liu, H. et al. Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter 4, 2886–2901 (2021).

    CAS 

    Google Scholar 

  • Niu, Y. et al. The new generation of soft and wearable electronics for health monitoring in varying environment: from normal to extreme conditions. Mater. Today 41, 219–242 (2020).

    Google Scholar 

  • Liu, H. et al. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small 14, 1801711 (2018).

    Google Scholar 

  • Tamayol, A. et al. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Health. Mater. 5, 711–719 (2016).

    CAS 

    Google Scholar 

  • Hansa, I., Semaan, S., Vaid, N. & Ferguson, D. Remote monitoring and “Tele-orthodontics”: Concept, scope and applications. Semin Orthod. 4, 470–481 (2018).

    Google Scholar 

  • Xiao, J. et al. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 91, 14803–14807 (2019).

    CAS 

    Google Scholar 

  • Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Health. Mater. 6, 1601355 (2017).

    Google Scholar 

  • Source link