Preloader

Fe and Zn stress induced gene expression analysis unraveled mechanisms of mineral homeostasis in common bean (Phaseolus vulgaris L.)

  • 1.

    Lopez-Arredondo, D. L., Leyva-Gonzalez, M. A., Alatorre-Cobos, F. & Herrera-Estrella, L. Biotechnology of nutrient uptake and assimilation in plants. Int J Dev Biol. 57, 595–610 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Taiz, L. & Zeiger, E. Plant Physiology (5th ed.) 782 p (Sinauer Associates Inc., 2010 ).

  • 3.

    Bashir, K., Rasheed, S., Kobayashi, T., Seki, M. & Nishizawa, N. K. Regulating subcellular metal homeostasis: The key to crop improvement. Front. Plant Sci. 7, 1192 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Puig, S. & Penarrubia, L. Placing metal micronutrients in context: transport and distribution in plants. Curr. Opin. Plant Biol. 12, 299–306 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Hermans, C., Hammond, J. P., White, P. J. & Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation. Trends Plant Sci. 11, 610–617 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Lu, J. & Magnani, E. Seed tissue and nutrient partitioning, a case for the nucellus. Plant Reprod. 31, 309–317 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Peng, Z. et al. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci. Rep. 6, 345–348 (2016).

    Google Scholar 

  • 8.

    Castro-Guerrero, N. A., Isidra-Arellano, M. C., Mendoza-Cozatl, D. G. & Valdes-Lopez, O. Common bean: A legume model on the rise for unraveling responses and adaptations to iron, zinc, and phosphate deficiencies. Front. Plant Sci. 7, 600 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R. and Appel, R.D. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook, pp. 571–607(2005).

  • 10.

    Yu, C. S., Chen, Y. C., Lu, C. H. & Hwang, J. K. Prediction of protein subcellular localization. Proteins 64(3), 643–651 (2016).

    Google Scholar 

  • 11.

    Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300(4), 1005–1016 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Kuo-Chen, C., Hong-Bin, Shen. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5, e11335 (2010).

  • 13.

    Horton, P. et al. WoLF PSORT: protein localization predictor. Nucl. Acids Res. 35, 585–587 (2007).

    Google Scholar 

  • 14.

    Hu, B. et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8), 1296–1297 (2015).

    Google Scholar 

  • 15.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7), 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Urwat, U., Zargar, S.M., Ahmad, S.M. & Ganai, N.A. Insights into role of STP13 in sugar driven signaling that leads to decrease in photosynthesis in dicot legume crop model (Phaseolus vulgaris L.) under Fe and Zn stress. Mol. Biol. Rep. https://doi.org/10.1007/s11033-021-06295-z (2021).

  • 17.

    Chen, J. B., Wang, S. M., Jing, R. L. & Mao, X. G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J. Plant Physiol. 166, 12–19 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Ayala-Vela, J. et al. Iron Content and Ferritin Gene Expression In Common Bean (Phaseolus vulgaris L). Agricultura Técnica en México. 34(4), 481–489 (2008).

    Google Scholar 

  • 19.

    Xue, Y. et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot 117, 363–377 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25(4), 402–408 (2001).

    CAS 

    Google Scholar 

  • 21.

    Zinati, Z., ShamLoo-Dashtpagerdi, R. & Behpouri, A. In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Mol. Biol. Res. Commun. 5(4), 233–246 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Barozai, M. Y. K. & Wahid, H. A. In silico identification and characterization of cumulative abiotic stress responding genes in potato (Solanum tuberosum L.). Pak. J. Bot. 44, 57–69 (2012).

    CAS 

    Google Scholar 

  • 23.

    Barozai, M. Y. K., Baloch, I. A. & Din, M. Identification of microRNAs in ecological model plant Mimulus. J. Biophys. 2(3), 322–331 (2011).

    CAS 

    Google Scholar 

  • 24.

    Barozai, M. Y. K., Baloch, I. A. & Din, M. Identification of microRNAs and their targets in Helianthus. Mol. Biol. Rep 39(3), 2523–2529 (2011).

    PubMed 

    Google Scholar 

  • 25.

    Barozai, M. Y. K. The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol. Biol. Rep. 39(5), 6259–6266 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Qin, L. et al. Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine max L). Front. Plant Sci. 8, 1436 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Vaish, S. et al. In silico genome-wide identification and characterization of the glutathione S-transferase gene family in Vigna radiata (L) Wilczek. Genome 1, 1–12 (2018).

    Google Scholar 

  • 28.

    Sharma, R. & Suresh, C. G. Genome wide identification and structure function studies of proteases and protease inhibitors in Cicer Arientinum (Chickpea). Comput. Biol. Med. 56, 67–81 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Kumar, A. et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS ONE 13(12), 1. https://doi.org/10.1371/journal.pone.0208409 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Roosta, H. R., Estaji, A. & Niknam, F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 55, 30 (2017).

    Google Scholar 

  • 31.

    Zhao, A. Q., Bao, Q. L. & Tian, X. H. Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L). J. Environ. Biol. 32, 235–239 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Thomine, S. & Lanquar, V. Iron Transport and Signaling in Plants. M. Geisler and K. Venema (eds.) Transporters and Pumps in Plant Signaling. Signaling and Communication in Plants 7. https://doi.org/10.1007/978-3-642-14369-4_4 (2011).

  • 33.

    Vert, G. et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6), 1223–1233 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Arrivault, S., Senger, T. & Kramer, U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. PLANT J. 46, 861–879 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Haydon, M. J. et al. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Zargar, S. M. et al. Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross talk between excess Zinc and Iron deficiency. Proteomics 1, 1–6 (2015).

    Google Scholar 

  • 37.

    Connolly, E. L., Fett, J. P. & Guerinot, M. L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14, 1347–1357 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Kerkeb, L. et al. Iron-induced turnover of the Arabidopsis iron-regulated transporter1 metal transporter requires lysine residues. Plant Physiol. 146, 1964–1973 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Barberon, M. et al. Monoubiquitin-dependent endocytosis of t he iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. USA 108, 450–458 (2011).

    ADS 

    Google Scholar 

  • 40.

    Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils. Nature 397(6721), 694–697 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Connolly, E. L., Campbell, N. H., Grotz, N., Prichard, C. L. & Guerinot, M. L. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol. 133(3), 1102–1110 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Li, L., Cheng, X. & Ling, H. Q. Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Mol. Biol. 54(1), 125–136 (2004).

    PubMed 

    Google Scholar 

  • 43.

    Grotz, N. & Guerinot, M. L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763, 595–608 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Brian, M. W., Blevins, D. G. & Eide, D. J. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol. 129, 85–94 (2002).

    Google Scholar 

  • 45.

    Bughio, N., Takahashi, M., Yoshimura, E., Nishizawa, N. K. & Mori, S. Characteristics of light-regulated iron transport system in barley chloroplasts. Soil Sci. Plant Nutr. 43, 959–963 (1997).

    CAS 

    Google Scholar 

  • 46.

    Li, W. & Lan, P. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. Front. Plant Sci. 8, 40 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Briat, J. F. et al. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 105, 811–822 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Naranjo-Arcos, M. A. & Bauer, P. Iron Nutrition, Oxidative Stress, and Pathogen Defense. INTECH https://doi.org/10.5772/63204 (2016).

    Article 

    Google Scholar 

  • 49.

    Sudre, D. et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J Exp Bot. 64, 2665–2688 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Yang, T. J., Lin, W. D. & Schmidt, W. Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol. 152, 2130–2141 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Lan, P., Li, W. & Schmidt, W. A digital compendium of genes mediating the reversible phosphorylation of proteins in Fe-deficient Arabidopsis roots. Front. Plant Sci. 4, 173 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Zargar, S.M., Kurata, R., Inaba, S. & Fukao, Y. Unraveling the iron deficiency responsive proteome in Arabidopsis shoot by iTRAQ-OFFGEL approach. PLANT SIGNAL BEHAV. 8(10), e26892 (2013).

  • 53.

    Stacey, M. G. et al. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 146, 589–601 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Stacey, M. G., Osawa, H., Patel, A., Gassmann, W. & Stacey, G. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223, 291–305 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Zhai, Z. et al. OPT3 is a phloem specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmiumin Arabidopsis. Plant Cell 26, 2249–2264 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Gao, H. et al. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytol. 217, 179–193 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Thomine, S., Wang, R., Ward, J. M., Crawford, N. M. & Schroeder, J. I. Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes. Proc. Natl. Acad. Sci. USA 97, 4991–4996 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Thomine, S., Lelievre, F., Debarbieux, E., Schroeder, J. I. & Barbier-Brygoo, H. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J. 34, 685–695 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Lanquar, V. et al. Mobilization of vacuolar iron byAtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO Rep. 24, 4041–4051 (2005).

    CAS 

    Google Scholar 

  • 60.

    Onaga, G. & Wydra, K. Advances in Plant Tolerance to Abiotic Stresses. Licensee InTech. Plant Genomics. https://doi.org/10.5772/64350 (2017).

    Article 

    Google Scholar 

  • 61.

    Milner, M. J., Seamon, J., Craft, E. & Kochian, L. V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot. 6, 369–381 (2013).

    Google Scholar 

  • 62.

    Grotz, N. et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA 95(12), 7220–7224 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E. V. & Clemens, S. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 37, 269–281 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Talke, I. N., Hanikenne, M. & Kramer, U. Zinc-dependent global transcriptional control, transcriptional deregulation and higher gene copy number for genes in metal homeostasis of the hyper accumulator Arabidopsis halleri. Plant Physiol. 142, 148–167 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Lin, Y. F. et al. Arabidopsis IRT3 is a zinc- regulated and plasmamembrane localized zinc/iron transporter. New Phytol. 182, 392–404 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    VanDeMortel, J. E. et al. Large expression dif- ferences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147 (2006).

    CAS 

    Google Scholar 

  • 67.

    Nevo, Y. & Nelson, N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 1763, 609–620 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Simoes, C. C., Melo, J. O., Magalhaes, J. V. & Guimaraes, C. T. Genetic and molecular mechanisms of aluminum tolerance in plants. Genet. Mol. Biol. 11, 1949–1957 (2012).

    CAS 

    Google Scholar 

  • 69.

    Hall, J. L. & Williams, L. E. Transition metal transporters in plants. J. Exp. Bot. 54, 2601–2613 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Cailliatte, R., Lapeyre, B., Briat, J. F., Mari, S. & Curie, C. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J. 422, 217–228 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Wang, N. et al. AhNRAMP1 Enhances Manganese and Zinc Uptake in Plants. Front. Plant Sci. 10, 415 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Maser, P. et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646–1667 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Kramer, U., Talke, I. N. & Hanikenne, M. Transition metal transport. FEBS Lett. 581, 2263–2272 (2007).

    PubMed 

    Google Scholar 

  • 74.

    Janicka-Russak, M., Kabała, K., Burzyński, M. & Kłobus, G. Response of plasmamembrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot. 59, 3721–3728 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Lane, B. G. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J. 8, 294–301 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Zhou, F. S. et al. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol. 117, 33–41 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Woo, E. J., Dunwell, J. M., Goodenough, P. W., Marvier, A. C. & Pickersgill, R. W. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat. Struct. Biol. 7, 1036–1040 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Zimmermann, G., BaumLein, H., Mock, H. P., Himmelbach, A. & Schweizer, P. The multigene family encoding germin-like proteins of barley: Regulation and function in basal host resistance. Plant Physiol. 142, 181–192 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Druka, A., Kudrna, D., Kannangara, C. G., von Wettstein, D. & Kleinhofs, A. Physical and genetic mapping of barley: Hordeum vulgare. germin-like cDNAs. Proc. Natl. Acad. Sci. USA 99, 850–855 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Li, Y. et al. Expression study of soybean germin-like gene family reveals a role of GLP7 gene in various abiotic stress tolerances. Can. J. Plant Sci. 96, 296–304 (2016).

    CAS 

    Google Scholar 

  • 81.

    Wang, T., Chen, X., Zhu, F., Li, H., Li, L., Yang, Q., Chi, X., Yu, S., & Liang, X. Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One 8, e61722 (2013).

  • 82.

    Astudillo, C., Fernandez, A. C., Blair, M. W. & Cichy, K. A. The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression. Front. Plant Sci. 4, 286 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Vert, G., Briat, J. F. & Curie, C. Arabidopsis IRT2 gene encodes a root periphery iron transporter. The Plant J. 26(2), 181–189 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Mendoza-Cozatl, D. G., Xie, Q., Akmakjian, G. Z., Jobe, T. O., Patel, A. and Stacey, M. G. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol. Plant 7, 1455 1469 (2014).

  • 85.

    Ghandilyan, A., Vreugdenhil, D. & Aarts, M. G. M. Progress in the genetic understanding of plant iron and zinc. Physiol. Plant 126, 407–417 (2006).

    CAS 

    Google Scholar 

  • Source link