Preloader

Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants

  • 1.

    Fromont-Racine, M., Rain, J.-C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277–282 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J. 6, 3901–3907 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Smale, S. T. Luciferase assay. Cold Spring Harb. Protoc. 2010, pdb.prot5421 (2010).

    PubMed 

    Google Scholar 

  • 4.

    Kain, S. R. et al. Green fluorescent protein as a reporter of gene-expression and protein localization. Biotechniques 19, 650–655 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    He, Y., Zhang, T., Sun, H., Zhan, H. & Zhao, Y. A reporter for noninvasively monitoring gene expression and plant transformation. Hortic. Res. 7, 152 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Fonseca, J. P. et al. Iron-sulfur cluster protein NITROGEN FIXATION S-LIKE1 and its interactor FRATAXIN function in plant immunity. Plant Physiol. 184, 1532–1548 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Wang, Z. et al. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes. Sci. Rep. 7, 4910 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Wang, K., Kang, L., Anand, A., Lazarovits, G. & Mysore, K. S. Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. N. Phytol. 174, 212–223 (2007).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Werner, S., Breus, O., Symonenko, Y., Marillonnet, S. & Gleba, Y. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc. Natl Acad. Sci. USA 108, 14061–14066 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol. Biol. Rev. 67, 16–37 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Hwang, H. H., Yu, M. & Lai, E. M. Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15, e0186 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Mao, Y. F., Botella, J. R., Liu, Y. G. & Zhu, J. K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Yang, X. et al. Plant biosystems design research roadmap 1.0. BioDesign Res. 2020, 8051764 (2020).

    Article 

    Google Scholar 

  • 14.

    Harrison, S. J. et al. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods 2, 19 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Bhalla, P. L. & Singh, M. B. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat. Protoc. 3, 181–189 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Shimizu, A., Shiratori, I., Horii, K. & Waga, I. Molecular evolution of versatile derivatives from a GFP-like protein in the marine copepod Chiridius poppei. PLoS ONE 12, e0181186 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Chin, D. P. et al. Generation of brilliant green fluorescent petunia plants by using a new and potent fluorescent protein transgene. Sci. Rep. 8, 16556 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Sannigrahi, P., Ragauskas, A. J. & Tuskan, G. A. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuel Bioprod. Bior 4, 209–226 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Liu, Y. Q., Heying, E. & Tanumihardjo, S. A. History, global distribution, and nutritional importance of Citrus fruits. Compr. Rev. Food Sci. F. 11, 530–545 (2012).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Yamasaki, S. et al. Arabidopsis thaliana cold-regulated 47 gene 5′-untranslated region enables stable high-level expression of transgenes. J. Biosci. Bioeng. 125, 124–130 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Matsui, T., Sawada, K., Takita, E. & Kato, K. The longer version of Arabidopsis thaliana heat shock protein 18.2 gene terminator contributes to higher expression of stably integrated transgenes in cultured tobacco cells. Plant Biotechnol. 31, 191–194 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Gutierrez-Valdes, N. et al. Hairy root cultures—A versatile tool with multiple applications. Front. Plant Sci. 11, 33 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Gomes, C., Dupas, A., Pagano, A., Grima-Pettenati, J. & Paiva, J. A. P. Hairy root transformation: a useful tool to explore gene function and expression in Salix spp. recalcitrant to transformation. Front. Plant Sci. 10, 1427 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Ma, Y. et al. Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J. Genet Genom. 36, 267–276 (2009).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ye, X. D. et al. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens. Transgenic Res. 20, 773–786 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Breyer, D., Kopertekh, L. & Reheul, D. Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants – scientific developments, current use, operational access and biosafety considerations. Crit. Rev. Plant Sci. 33, 286–330 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Verma, S. S., Chiinnusarny, V. & Bansal, K. C. A simplified floral dip method for transformation of Brassica napus and B. carinata. J. Plant Biochem Biot. 17, 197–200 (2008).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Liu, Z. Q. et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 7, 2193 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Yuan, G. et al. Biosystems design to accelerate C3-to-CAM progression. BioDesign Res. 2020, 3686791 (2020).

    Article 

    Google Scholar 

  • 31.

    Hernandez-Garcia, C. M. & Finer, J. J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 217, 109–119 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Notaguchi, M. & Okamoto, S. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 6, 161 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Dietz-Pfeilstetter, A. Stability of transgene expression as a challenge for genetic engineering. Plant Sci. 179, 164–167 (2010).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Rigoulot, S. B. et al. Imaging of multiple fluorescent proteins in canopies enables synthetic biology in plants. Plant Biotechnol. J. 19, 830–843 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Xie, M. et al. A 5-enolpyruvylshikimate 3-phosphate synthase functions as a transcriptional repressor in Populus. Plant Cell 30, 1645–1660 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Yuan, G. et al. PROTEIN PHOSHATASE 2A B’α and β maintain centromeric sister chromatid cohesion during meiosis in. Arabidopsis. Plant Physiol. 178, 317–328 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Li, X. Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio-Protoc. 1, e95 (2011).

    Google Scholar 

  • 38.

    Chen, L. Z. et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic. Res. 5, 13 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Filichkin, S. A. et al. Alcohol-inducible gene expression in transgenic. Populus. Plant Cell Rep. 25, 660–667 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Weigel, D. & Glazebrook, J. Quick miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009, pdb.prot5179 (2009).

    PubMed 

    Google Scholar 

  • 41.

    Wang, Y. et al. Validation of reference genes for gene expression by quantitative real-time RT-PCR in stem segments spanning primary to secondary growth in Populus tomentosa. Plos ONE 11, e0157370 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Lu, H. W. et al. RNA interference suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus. New Phytologist 222, 923–937 (2019).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Lu, H. W., Gordon, M. I., Amarasinghe, V. & Strauss, S. H. Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1). Sci. Rep. 10, 6581 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Qiao, Z. & Libault, M. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. Front. Plant Sci. 4, 484 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Zhang, F., LeBlanc, C., Irish, V. F. & Jacob, Y. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep. 36, 1883–1887 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link