Preloader

Environmental and molecular approach to dye industry waste degradation by the ascomycete fungus Nectriella pironii

  • 1.

    Dyes and pigments market – growth, trends, covid-19 impact, and forecasts (2021 – 2026). https://www.mordorintelligence.com/industry-reports/dyes-and-pigments-market?gclid=Cj0KCQjw5uWGBhCTARIsAL70sLLOVQUzpBpx_6acFXmbpYQ7okD2h8qIaTaj9a0nXMeinPRP-C03hTYaAhN0EALw_wcB. Accessed on 21 July 2021.

  • 2.

    Jabłońska, M., Stawska, J. & Czechowska, D.I. Country-specific determinants of textile industry development in Poland: comparative analysis of the years 2007 and 2017. Autex Res. J. 20(2), 186–193. https://doi.org/10.2478/aut-2019-0064 (2020).

  • 3.

    Hajdys, D., Jabłońska, M. & Ślebocka, M. Impact of textile industry restructuring on the financial condition of local government units for the example of the Łódź region in Poland. Fibres Text. East. Eur. 5(143), 8–19. https://doi.org/10.5604/01.3001.0014.2379 (2020).

    Article 

    Google Scholar 

  • 4.

    Marszał, T. Łódź metropolitan area: delimitation, planning and development. Geogr. Pol. 90(3), 281–300. https://doi.org/10.7163/GPol.0096 (2017).

    Article 

    Google Scholar 

  • 5.

    Bibi, I., Bhatti, H. N. & Asgher, M. Decolourisation of direct dyes with manganese peroxidase from white rot Basidiomycete Ganoderma lucidum-IBL-5. Can. J. Chem. Eng. 87, 435–440. https://doi.org/10.1002/cjce.20165 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Nouren, S. & Bhatti, H. N. Mechanistic study of degradation of basic violet 3 by Citrus limon peroxidase and phytotoxicity assessment of its degradation products. Biochem. Eng. J. 95, 9–19. https://doi.org/10.1016/j.bej.2014.11.021 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Benkhaya, S., M’rabbet, S. & El Harfi, A. A review on classifications, recent synthesis and applications of textile a review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 115, 107891 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Długoński, A. & Dushkova, D. The hidden potential of informal urban greenspace: an example of two former landfills in post-socialist cities (central Poland). Sustainability 13, 3691. https://doi.org/10.3390/su13073691 (2021).

    Article 

    Google Scholar 

  • 9.

    Holkar, Ch. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M. & Pandit, A. B. A critical review on textile wastewater treatments : possible approaches. J. Environ. Manage. 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Jędrzejczak, K. & Wojciechowski, M. A numerical method of analyzing the composition of colored wastewater from dyeing plant. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03208-2 (2021).

    Article 

    Google Scholar 

  • 11.

    Nai, C. et al. Potentially contamination and health risk to shallow groundwater caused by closed industrial solid waste landfills: Site reclamation evaluation strategies. J. Clean. Prod. 286, 125402. https://doi.org/10.1016/j.jclepro.2020.125402 (2021).

    CAS 
    Article 

    Google Scholar 

  • 12.

    NIK Report. Hazard prevention from the landfills on the Lodz Voivodeship area. https://www.nik.gov.pl/plik/id,23253,vp,25961.pdf. Accessed on 21 July 2021.

  • 13.

    Bibi, I. et al. Investigation of catalytic properties of Manganese Peroxidase (MnP)produced from Agaricus bisporus A21 and its potential application in the biotransformation of xenobiotic compound. J. Chem. Soc. Pak. 37(05), 859–868 (2015).

    CAS 

    Google Scholar 

  • 14.

    Yeilagi, S., Rezapour, S. & Asadzadeh, F. Degradation of soil quality by the waste leachate in a Mediterranean semi-arid ecosystem. Sci. Rep. 11, 11390. https://doi.org/10.1038/s41598-021-90699-1 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Brüschweiler, B. J. & Merlot, C. Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul. Toxicol. Pharmacol. 88, 214–226. https://doi.org/10.1016/j.yrtph.2017.06.012 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Özkan, B. Ç., Fırat, M., Dotse, S. & Bakırdere, S. Accurate and sensitive determination of harmful aromatic amine products of azo dyes in wastewater and textile samples by GC – MS after multivariate optimization of binary solvent dispersive liquid-liquid microextraction. Microchem. J145, 84–89. https://doi.org/10.1016/j.microc.2018.10.023 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Piccinini, P., Senaldi, C. & Buriova, E. European Survey on the presence of banned azodyes in textiles. EUR 23447 EN. Luxembourg (Luxembourg): OPOCE; 2008. JRC44198. https://publications.jrc.ec.europa.eu/repository/handle/JRC44198. Accessed on 21 July 2021.

  • 18.

    Jasińska, A., Góralczyk, A. & Długoński J. Dyes decolourisation and degradation by microorganisms in Microbial biodegradation: From omics to function and application (ed. Długoński, J.) 119–141 (Caister Academic Press: Norfolk, UK, 2016) ISBN: 978–1–910190–45–6.

  • 19.

    Noreen, R., Asgher, M., Bhatti, H. N., Batool, S. & Asad, M. J. Phanerochaete chrysosporium IBL-03 secretes high titers of manganese peroxidase during decolorization of Drimarine Blue K2RL textile dye. Environ Technol. 32(11–12), 1239–1246. https://doi.org/10.1080/09593330.2010.534820 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Islam, M. A. et al. Microbial load in bio-slurry from different biogas plants in Bangladesh. J. Adv. Vet. Anim. Res. 6(3), 376–383. https://doi.org/10.5455/javar.2019.f357 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Kalsoom, U., Ashraf, S. S., Meetani, M. A., Rauf, M. A. & Bhatti, H. N. Mechanistic study of a diazo dye degradation by Soybean Peroxidase. Chem Cent J. 7(1), 93. https://doi.org/10.1186/1752-153X-7-93 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Szewczyk, R. & Kowalski, K. Metabolomics and crucial enzymes in microbial degradation of contaminants in Microbial biodegradation: From omics to function and application, application (ed. Długoński, J.) 43–65 (Caister Academic Press: Norfolk, UK, 2016) ISBN: 978–1–910190–45–6.

  • 23.

    Góralczyk-Bińkowska, A., Jasińska, A., Długoński, A., Płociński, P. & Długoński, J. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLoS ONE 15(4), e0231453. https://doi.org/10.1371/journal.pone.0231453 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Janas, M. & Zawadzka, A. Assessment of the monitoring of an industrial waste landfill. Ecol. Chem. Eng. S. 25(4), 659–669. https://doi.org/10.1515/eces-2018-0044 (2018).

    Article 

    Google Scholar 

  • 25.

    Kuśmierz, A., Krawczyńska, B. & Krawczyński, J. Ocena oddziaływania składowisk pozakładowych zlokalizowanych na terenie byłych zakładów “Boruta” w Zgierzu na życie i zdrowie mieszkańców Zgierza i okolic oraz dla środowiska [Assessment of the impact of off-site landfills located in the former “Boruta” plants in Zgierz on the life and health of the inhabitants of Zgierz and the surrounding area, and on the environment], Instytut Ochrony Środowiska – Państwowy Instytut Badawczy: Warsaw, Poland 2019. (in Polish).

  • 26.

    Rysiukiewicz K. Dokumentacja określająca warunki hydrogeologiczne w rejonie osadników gipsów i popiołów na terenie Z.P.B. “Boruta” w Zgierzu w likwidacji, pow. zgierski, woj. łódzkie [Documentation specifying the hydrogeological conditions in the area of gypsum and ash settlers at the “Boruta” Dye Production Plant in Zgierz in liquidation, Zgierz poviat, Łódź voivodeship], Narodowe Archiwum Geologiczne, PIG-PIB; 2000. (in Polish).

  • 27.

    Szadkowska M. Dokumentacja określająca warunki hydrogeologiczne w rejonie osadników gipsów i popiołów na terenie Z.P.B. “Boruta” w Zgierzu w likwidacji, pow. zgierski, woj. łódzkie [Documentation specifying the hydrogeological conditions in the area of gypsum and ash settlers at the “Boruta” Dye Production Plant in Zgierz in liquidation, Zgierz poviat, Łódź voivodeship], Narodowe Archiwum Geologiczne, PIG-PIB; 2000. (in Polish).

  • 28.

    Svendsen, L. M. & Gustafsson, B. 2020. Waterborne nitrogen and phosphorus inputs and water flow to the Baltic Sea 1995–2018. HELCOM Baltic Sea Environment Fact Sheet 2020. https://helcom.fi/media/documents/BSEFS-Waterborne-nitrogen-and-phosphorus-inputs-and-water-flow-to-the-Baltic-Sea.pdf. Accessed on 21 July 2021.

  • 29.

    Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and the conditions to be met when discharging sewage into waters or ground, as well as when discharging rainwater or meltwater into waters or into devices aquatic. Dz.U. 2019 poz. 1311. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001311/O/D20191311.pdf. Accessed on 28 June 2021 (in Polish).

  • 30.

    Sen, S. K., Patra, P., Das, C. R., Raut, S. & Raut, S. Pilot-scale evaluation of biodecolorization and biodegradation of reactive textile wastewater: an impact on its use in irrigation of wheat crop. Water Resour. Ind. 21, 100106. https://doi.org/10.1016/j.wri.2019.100106 (2019).

    Article 

    Google Scholar 

  • 31.

    Różalska, S., Bernat, P., Michnicki, P. & Długoński, J. Fungal transformation of 17α-ethinylestradiol in the presence of various concentrations of sodium chloride. Int. Biodeter. Biodegr. 103, 77–84. https://doi.org/10.1016/j.ibiod.2015.04.016 (2015).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Piekutin, J. Monitoring of groundwater in the area of a reclaimed municipal waste landfill. J. Ecol. Eng. 20(8), 262–268 (2019). https://doi.org/10.12911/22998993/111718

  • 33.

    Jasim, H. H., Altahir, B. M. & Sultan, M. S. Solid cartridges in determination of benzidines in river and wastewater by HPLC. World Rural Observ. 10(1), 52–60. https://doi.org/10.7537/marswro100118.07 (2018).

    Article 

    Google Scholar 

  • 34.

    Mazzo, T. M., Saczk, A. A., Umbuzeiro, G. A. & Zanoni, M. V. B. Analysis of aromatic amines in surface waters receiving wastewater from a textile industry by liquid chromatographic with electrochemical detection. Anal. Lett. 39(14), 2671–2685. https://doi.org/10.1080/00032710600824797 (2006).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Przygucki, T. Sto lat koloru. Zakłady Przemysłu Barwników BORUTA S.A. [100 years of colour. BORUTA S.A. Dye Industry Plant] (Publishing House Pryzmat: Łódź, Poland 1994). (in Polish).

  • 36.

    Castillo, J. C., Orrego-Hernández, J. & Portilla, J. Cs2CO3-Promoted direct n-alkylation: highly chemoselective synthesis of n-alkylated benzylamines and anilines. Eur. J. Org. Chem. 22, 1–13. https://doi.org/10.1002/ejoc.201600549 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    de Lima, D. P. et al. Fungal Bioremediation of pollutant aromatic amines. Curr. Opin. Green Sustain. Chem. 11, 34–44. https://doi.org/10.1016/j.cogsc.2018.03.012 (2018).

    Article 

    Google Scholar 

  • 38.

    Singh, R. P., Singh, P. K. & Singh, R. L. Role of azoreductases in bacterial decolorization of azo dyes. Curr. Trends Biomed. Eng. Biosci. 9(3), 50–52. https://doi.org/10.19080/CTBEB.2017.09.555764 (2017).

  • 39.

    Tong, Z., Yang, D., Xiao, T., Tian, Y. & Jiang, Z. Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125. https://doi.org/10.1016/j.cej.2014.08.072 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Barsing, P., Tiwari, A., Joshi, T. & Garg, S. Bioresource technology application of a novel bacterial consortium for mineralization of sulphonated aromatic amines. Bioresour. Technol. 2011102(2), 765–771. https://doi.org/10.1016/j.biortech.2010.08.098 (2011).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Fatima, M., Saeed, M., Aslam, M., Lindström, W. R. & Farooq, R. Application of novel bacterial consortium for biodegradation of aromatic amine 2-ABS using response surface methodology. J. Microbiol Methods 174, 105941. https://doi.org/10.1016/j.mimet.2020.105941 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Gunatilake, S. K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 1, 12–18 (2015).

    Google Scholar 

  • 43.

    Anwar, F. et al. Characterization of Reactive Red-120 decolorizing bacterial strain Acinetobacter junii FA10 capable of simultaneous removal of azo dyes and hexavalent chromium. Water Air Soil Pollut. 2014225, 1–16. https://doi.org/10.1007/s11270-014-2017-7 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Hussain, S. et al. Simultaneous removal of reactive dyes and hexavalent chromium by a metal tolerant Pseudomonas sp. WS-D / 183 harboring plant growth promoting traits. Int. J. Agric. Biol. 23(2), 241–252. https://doi.org/10.17957/IJAB/15.1282 (2020).

  • 45.

    Rezapour, S., Samadi, A., Kalavrouziotis, I. K. & Ghaemian, N. Impact of the uncontrolled leakage of leachate from a municipal solidwaste landfill on soil in a cultivated-calcareous environment. Waste Manage. 82, 51–61. https://doi.org/10.1016/j.wasman.2018.10.013 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Bera, S. P. & Tank, S. K. Microbial degradation of Procion Red by Pseudomonas stutzeri. Sci. Rep. 11, 3075. https://doi.org/10.1038/s41598-021-82494-9 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A. P. & Narasimha, G. Fungal laccases and their applications in bioremediation. Enzyme Res. 163242, 1–21. https://doi.org/10.1155/2014/163242 (2014).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Janusz, G. et al. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 21, 966. https://doi.org/10.3390/ijms21030966 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Piscitelli, A. et al. Induction and transcriptional regulation of laccases in fungi. Curr. Genomics 12(2), 104–112. https://doi.org/10.2174/138920211795564331 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Mougin, Ch., Kollmann, A. & Jolivalt, C. Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnol. Lett. 24, 139–142. https://doi.org/10.1023/A:1013802713266 (2002).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Črešnar, B. & Petrič, Š. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta – Proteins Proteomics 1814(1), 29–35. https://doi.org/10.1016/j.bbapap.2010.06.020 (2011).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Hussain, R., Mushtaq, A., Tabreiz, A. K. & Yusuf, A. Fungal P450 monooxygenases – the diversity in catalysis and their promising roles in biocontrol activity. Appl. Microbiol. Biotechnol. 104(3), 989–999. https://doi.org/10.1007/s00253-019-10305-3 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Jasińska, A., Paraszkiewicz, K., Sip, A. & Długoński, J. Malachite Green decolorization by the filamentous fungus Myrothecium roridum – mechanistic study and process optimization. Bioresour. Technol. 194, 43–48. https://doi.org/10.1016/j.biortech.2015.07.008 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Bernat, P. & Długoński, J. Degradation of tributyltin by the filamentous fungus Cunninghamella elegans, with involvement of cytochrome P-450. Biotechnol. Lett. 24(23), 1971–1974. https://doi.org/10.1023/A:1021177716010 (2002).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Nykiel-Szymańska, J., Stolarek, P. & Bernat, P. Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ. Sci. Pollut. Res. Int. 25(3), 2738–2743. https://doi.org/10.1007/s11356-017-0571-4 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Nowak, M., Soboń, A., Litwin, A. & Różalska, S. 4-n-nonylphenol degradation by the genus Metarhizium with cytochrome P450 involvement. Chemosphere 220, 324–334. https://doi.org/10.1016/j.chemosphere.2018.12.114 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Nowak, M., Zawadzka, K., Szemraj, J., Góralczyk-Bińkowska, A. & Lisowska, K. Biodegradation of chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways. Int. J. Mol. Sci. 22, 4360. https://doi.org/10.3390/ijms22094360 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Ning, D., Wang, H., Ding, Ch. & Lu, H. Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolyticconditions. Biodegradation 21(6), 889–901. https://doi.org/10.1007/s10532-010-9349-9 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 59.

    Syed, K. & Yadav, J. S. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol. 38(4), 339–363. https://doi.org/10.3109/1040841X.2012.682050 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Nykiel-Szymańska, J., Bernat, P. & Słaba, M. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicol. Environ. Saf. 162, 1–9. https://doi.org/10.1016/j.ecoenv.2018.06.060 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Milczarek, K., Wrońska, N. & Felczak, A. Media in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 475 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.

  • 62.

    Paraszkiewicz, K., Bernat, P. & Długoński, J. Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int. Biodeter. Biodegr. 63(1), 100–105. https://doi.org/10.1016/j.ibiod.2008.03.015 (2009).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Siewiera, P., Różalska, S. & Bernat, P. Estrogen-mediated protection of the organotin-degrading strain Metarhizium robertsii against oxidative stress promoted by monobutyltin. Chemosphere 185, 96–104. https://doi.org/10.1016/j.chemosphere.2017.06.130 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    PN-EN 1899–2:2002 Water Quality – Determination of Biological Oxygen Demand after n days (BODn)= Part 2: Method for undiluted samples. https://www.iso.org/obp/ui/#iso:std:iso:5815:-2:ed-1:v1:en:ed1:v1. Accessed on 21 July 2021.

  • 65.

    Procedure PB-20, edition 1 of 06.05.2019 – Determination of temperature.

  • 66.

    PN-EN ISO 10523:2012 – Water quality – Determination of pH. https://sklep.pkn.pl/pn-en-iso-10523-2012e.html. Accessed on 21 July 2021.

  • 67.

    PN-EN 27888:1999 – Water quality – Determination of pH. https://infostore.saiglobal.com/en-gb/standards/pn-en-27888-1999-922966_saig_pkn_pkn_2178929/. Accessed on 21 July 2021.

  • 68.

    PN-EN ISO 8467:2001 – Water quality – Determination of permanganate index. https://www.iso.org/standard/15669.html. Accessed on 21 July 2021.

  • 69.

    PN-EN 1484:1999 – Water analysis – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). https://infostore.saiglobal.com/en-gb/standards/pn-en-1484-1999-934164_saig_pkn_pkn_2201325/. Accessed on 21 July 2021.

  • 70.

    PN-EN ISO 13395:2001 – Water quality – Determination of orthophosphate and total phosphorus contents by flow analysis (FIA and CFA) — Part 1: Method by flow injection analysis (FIA). https://www.iso.org/standard/35050.html. Accessed on 21 July 2021.

  • 71.

    PN-EN ISO 10304–1:2009+AC:2012 – Water quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulphate. https://standards.iteh.ai/catalog/standards/cen/b9f31761-ea7c-49b2-ba7d-29ea4ebca97c/en-iso-10304-1-2009-ac-2012. Accessed on 21 July 2021.

  • 72.

    PN-EN ISO 11885:2009 – Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). https://www.iso.org/obp/ui/#iso:std:iso:11885:ed-2:v1:en. Accessed on 21 July 2021.

  • 73.

    EPA Method 7473 02.2007 – Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. https://www.epa.gov/sites/default/files/2015-12/documents/7473.pdf. Accessed on 21 July 2021.

  • 74.

    PN-EN ISO 14403–2:2012 – Water quality – Determination of total cyanide and free cyanide using flow analysis (FIA and CFA) — Part 2: Method using continuous flow analysis (CFA). https://www.iso.org/obp/ui/#iso:std:iso:14403:-2:ed-1:v1:en. Accessed on 21 July 2021.

  • 75.

    PN-EN ISO 9377–2:2003 – Water quality – Determination of hydrocarbon oil index — Part 2: Method using solvent extraction and gas chromatography. https://www.iso.org/obp/ui/#iso:std:iso:9377:-2:ed-1:v1:en. Accessed on 21 July 2021.

  • 76.

    PN-EN ISO 14402:2004 – Water quality – Determination of phenol index by flow analysis (FIA and CFA). https://www.iso.org/obp/ui/#iso:std:iso:14402:ed-1:v1:en:en. Accessed on 21 July 2021.

  • 77.

    Jasińska, A., Góralczyk-Bińkowska, A. & Długoński A. Characteristics and use of ligninolytic enzymes produced by fungi in environmental protection, industry and medicine in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 391–398 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.

  • 78.

    Jasińska, A. & Góralczyk-Bińkowska A. Dyes in Microbial biotechnology in the laboratory and in practice. Theory, exercises and specialist laboratories (ed. Długoński, J.) 357–361 (Łódź University Press & Jagiellonian University Press: Łódź-Kraków, Poland, 2021) e-ISBN 978–83–8220–420–9.

  • 79.

    Pueffel, C., Haase, D. & Priess, J.A. Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosyst. Serv. 30, A, 73–85. https://doi.org/10.1016/j.ecoser.2018.01.011 (2018).

  • 80.

    Długoński, A. & Szumański, M. Atlas Ekourbanistyczny Zielonej Infrastruktury Miasta Łodzi. Tom, I. Tereny Zieleni. Część, A. Parki Strefy Śródmiejskiej; [Eco-Urban Atlas of Green Infrastructure. Vol. 1a. Green Areas of Downtown], Łódzkie Towarzystwo Naukowe: Łódź, Poland, 2016. (in Polish, with English Summary).

  • Source link