Van, T.T.H., Elshagmani, E., Gor, M.C., Scott, P.C. & Moore, R.J. Campylobacter hepaticus sp. nov., isolated from chickens with spotty liver disease. Int. J. Syst. Evol. Microbiol. 66, 4518–4524. https://doi.org/10.1099/ijsem.0.001383 (2016).
Crawshaw, T. R. et al. Isolation of a novel thermophilic Campylobacter from cases of spotty liver disease in laying hens and experimental reproduction of infection and microscopic pathology. Vet. Microbiol. 179, 315–321. https://doi.org/10.1016/j.vetmic.2015.06.008 (2015).
Google Scholar
Gregory, M., Klein, B., Sahin, O. & Girgis, G. Isolation and characterization of Campylobacter hepaticus from layer chickens with spotty liver disease in the United States. Avian. Dis. 62, 78–85. https://doi.org/10.1637/11752-092017-Reg.1 (2018).
Google Scholar
Crawshaw, T. R. et al. Isolation of Campylobacter hepaticus from free-range poultry with spotty liver disease in New Zealand. N. Z. Vet. J. 69, 58–64. https://doi.org/10.1080/00480169.2020.1801532 (2020).
Google Scholar
Grimes, T. & Reece, R. Spotty liver disease—An emerging disease in free-range egg layers in Australia. in Proceedings of the Sixtieth Western Poultry Disease Conference. 53–56 (2011).
Khan, I. U. H., Hill, S., Nowak, E. & Edge, T. A. Effect of incubation temperature on the detection of thermophilic Campylobacter species from freshwater beaches, nearby wastewater effluents, and bird fecal droppings. Appl. Environ. Microbiol. 79, 7639–7645. https://doi.org/10.1128/AEM.02324-13 (2013).
Google Scholar
Kim, J. et al. An improved culture method for selective isolation of Campylobacter jejuni from wastewater. Front. Microbiol. 7, 1345. https://doi.org/10.3389/fmicb.2016.01345 (2016).
Google Scholar
Ismail, Y., Lee, H., Riordan, S. M., Grimm, M. C. & Zhang, L. The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS ONE 8, e56888. https://doi.org/10.1371/journal.pone.0056888 (2013).
Google Scholar
Reilly, S. S. & Gilliand, S. E. Improved culturing techniques for Campylobacter. J. Food Sci. 68, 2752–2757 (2003).
Google Scholar
Van, T. T. H. et al. Induction of spotty liver disease in layer hens by infection with Campylobacter hepaticus. Vet. Microbiol. 199, 85–90. https://doi.org/10.1016/j.vetmic.2016.12.033 (2017).
Google Scholar
Van, T. T. H. et al. Survival mechanisms of Campylobacter hepaticus identified by genomic analysis and comparative transcriptomic analysis of in vivo and in vitro derived bacteria. Front. Microbiol. 10, 107–107. https://doi.org/10.3389/fmicb.2019.00107 (2019).
Google Scholar
Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75 (2008).
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Google Scholar
Alazzam, B., Bonnassie-Rouxin, S., Dufour, V. & Ermel, G. MCLMAN, a new minimal medium for Campylobacter jejuni NCTC 11168. Res. Microbiol 162, 173–179. https://doi.org/10.1016/j.resmic.2010.09.024 (2011).
Google Scholar
Velayudhan, J. & Kelly, D. J. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. https://doi.org/10.1099/00221287-148-3-685 (2002).
Google Scholar
Kawanishi, T. et al. New detection systems of bacteria using highly selective media designed by SMART: Selective medium-design algorithm restricted by two constraints. PLoS ONE 6, e16512. https://doi.org/10.1371/journal.pone.0016512 (2011).
Google Scholar
Salahudeen, A. K., Clark, E. C. & Nath, K. A. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J. Clin. Invest. 88, 1886–1893. https://doi.org/10.1172/jci115511 (1991).
Kim, J. C., Oh, E., Kim, J. & Jeon, B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front. Microbiol. 6, 751. https://doi.org/10.3389/fmicb.2015.00751 (2015).
Google Scholar
Benoni, R. et al. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett. 591, 1212–1224. https://doi.org/10.1002/1873-3468.12630 (2017).
Google Scholar
Vorwerk, H. et al. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol. Microbiol. 93, 1224–1245. https://doi.org/10.1111/mmi.12732 (2014).
Google Scholar
Dickgiesser, N. & Czylwik, D. Chemically defined media for auxotyping of Campylobacter jejuni. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 260, 57–64. https://doi.org/10.1016/S0176-6724(85)80098-5 (1985).
Google Scholar
Chandrashekhar, K., Kassem, I. I. & Rajashekara, G. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond. Gut Microbes 8, 323–334. https://doi.org/10.1080/19490976.2017.1279380 (2017).
Google Scholar
Li, Z. et al. Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J. Med. Microbiol. 63, 343–354. https://doi.org/10.1099/jmm.0.068023-0 (2014).
Google Scholar
Vegge, C. S., Brøndsted, L., Li, Y.-P., Bang, D. D. & Ingmer, H. Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl. Environ. Microbiol. 75, 5308–5314. https://doi.org/10.1128/aem.00287-09 (2009).
Google Scholar
Seong, P. N. et al. Characterization of chicken by-products by mean of proximate and nutritional compositions. Korean. J. Food. Sci. Anim. Resour. 35, 179–188. https://doi.org/10.5851/kosfa.2015.35.2.179 (2015).
Google Scholar
Visscher, C. et al. Influence of a specific amino acid pattern in the diet on the course of an experimental Campylobacter jejuni infection in broilers. Poult. Sci. 97, 4020–4030. https://doi.org/10.3382/ps/pey276 (2018).
Google Scholar
Adedokun, S. A., Adeola, O., Parsons, C. M., Lilburn, M. S. & Applegate, T. J. Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poult. Sci. 90, 1737–1748. https://doi.org/10.3382/ps.2010-01245 (2011).
Google Scholar
Hoffman, P. S., George, H. A., Krieg, N. R. & Smibert, R. M. Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can. J. Microbiol. 25, 8–16. https://doi.org/10.1139/m79-002 (1979).
Karmali, M. A. et al. Evaluation of a blood-free, charcoal-based, selective medium for the isolation of Campylobacter organisms from feces. J. Clin. Microbiol. 23, 456–459. https://doi.org/10.1128/JCM.23.3.456-459.1986 (1986).
Google Scholar
Mendz, G. L., Ball, G. E. & Meek, D. J. Pyruvate metabolism in Campylobacter spp. Biochim. Biophys. Acta 1334, 291–302. https://doi.org/10.1016/S0304-4165(96)00107-9 (1997).
Google Scholar
Verhoeff-Bakkenes, L., Arends, A. P., Snoep, J. L., Zwietering, M. H. & de Jonge, R. Pyruvate relieves the necessity of high induction levels of catalase and enables Campylobacter jejuni to grow under fully aerobic conditions. Lett. Appl. Microbiol. 46, 377–382. https://doi.org/10.1111/j.1472-765X.2008.02326.x (2008).
Google Scholar
Reilly, S. S. & Gilliland, S. E. Improved culturing techniques for Campylobacter. J. Food Sci. 68, 2752–2757. https://doi.org/10.1111/j.1365-2621.2003.tb05800.x (2003).
Google Scholar
Davis, L. & DiRita, V. Growth and laboratory maintenance of Campylobacter jejuni. Curr. Protoc. Microbiol. 8(8A), 1 1–8A 1 7. https://doi.org/10.1002/9780471729259.mc08a01s10 (2008).
Secker, D., Tompkins, D. & Alderson, G. Gas-permeable lifecell tissue culture flasks give improved growth of Helicobacter pylori in a liquid medium. J. Clin. Microbiol. 29, 1060–1061. https://doi.org/10.1128/JCM.29.5.1060-1061.1991 (1991).
Google Scholar
Rollins, D. M., Coolbaugh, J. C., Walker, R. I. & Weiss, E. Biphasic culture system for rapid Campylobacter cultivation. Appl. Environ. Microbiol. 45, 284–289. https://doi.org/10.1128/AEM.45.1.284-289.1983 (1983).
Google Scholar
Shadowen, R. D. & Sciortino, C. V. Improved growth of Campylobacter pylori in a biphasic system. J. Clin. Microbiol. 27, 1744–1747. https://doi.org/10.1128/JCM.27.8.1744-1747.1989 (1989).
Google Scholar
Sellars, M. J., Hall, S. J. & Kelly, D. J. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-n-oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 184, 4187–4196. https://doi.org/10.1128/jb.184.15.4187-4196.2002 (2002).
Google Scholar
Kaakoush, N. O., Miller, W. G., De Reuse, H. & Mendz, G. L. Oxygen requirement and tolerance of Campylobacter jejuni. Res. Microbiol. 158, 644–650. https://doi.org/10.1016/j.resmic.2007.07.009 (2007).
Google Scholar
Ghaffar, N., Connerton, P. & Connerton, I. Filamentation of Campylobacter in broth cultures. Front. Microbiol. 6, 657. https://doi.org/10.3389/fmicb.2015.00657 (2015).
Google Scholar
Wright, J. et al. Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155, 80–94. https://doi.org/10.1099/mic.0.021790-0 (2009).
Google Scholar
Skirrow, M. B. Encyclopedia of Food Sciences and Nutrition. 2nd Edn. (ed. Benjamin Caballero) 779–786 (Academic Press, 2003).
King, Y. T. & Chen, T. C. Chemical and physical characteristics of chicken livers following adrenocorticotropic hormone-induced stress. J. Food. Sci. 63, 589–591. https://doi.org/10.1111/j.1365-2621.1998.tb15791.x (1998).
Google Scholar
Mabelebele, M., John, A., Ng’ambi, J., Norris, D. & Ginindza, M. Comparison of gastrointestinal tracts and pH values of digestive organs of Ross 308 broiler and indigenous Venda chickens fed the same diet. Asian. J. Anim. Vet. Adv. 9, 71–76. https://doi.org/10.3923/ajava.2014.71.76 (2014).
Google Scholar
Ciurescu, G., Vasilachi, A., Habeanu, M. & Dragomir, C. Effects of dietary lentil seeds inclusion on performance, carcass characteristics and cecal pH of broiler chickens. Indian J. Anim. Sci. 87, 1130–1134 (2017).
Google Scholar
Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals (Basel) 9, 63. https://doi.org/10.3390/ani9020063 (2019).
Google Scholar
Bolzani, R., Ruggeri, F. & Olivo, O. M. Average normal temperature of the chicken in the morning and after 1–2 days of fasting. Boll. Soc. Ital. Biol. Sper. 55, 1618–1622 (1979).
Google Scholar
Aroori, S. V., Cogan, T. A. & Humphrey, T. J. The effect of growth temperature on the pathogenicity of Campylobacter. Curr. Microbiol. 67, 333–340. https://doi.org/10.1007/s00284-013-0370-1 (2013).
Google Scholar
Kim, S. S. et al. The effect of the repeated subcultures of Helicobacter pylori on adhesion, motility, cytotoxicity, and gastric inflammation. J. Korean. Med. Sci. 17, 302–306. https://doi.org/10.3346/jkms.2002.17.3.302 (2002).
Google Scholar
Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, 206–214. https://doi.org/10.1093/nar/gkt1226 (2014).
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389 (1997).
Google Scholar
Phung, C. et al. Campylobacter hepaticus, the cause of Spotty Liver Disease in chickens: Transmission and routes of infection. Front. Vet. Sci. 6, 505. https://doi.org/10.3389/fvets.2019.00505 (2019).
Google Scholar

