Preloader

Enhanced production of pinosylvin stilbene with aging of Pinus strobus callus and nematicidal activity of callus extracts against pinewood nematodes

  • 1.

    Hirata, A. et al. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 12, e0182837 (2017).

    Article 

    Google Scholar 

  • 2.

    Naves, P. M., Camacho, S., De Sousa, E. M. D. & Quartau, J. A. Transmission of the pine wood nematode Bursaphelenchus xylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). J. Appl. Entomol. 131, 21–25 (2007).

    Article 

    Google Scholar 

  • 3.

    Mamiya, Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 21, 201–220 (1983).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 51, 61–83 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    James, R., Tisserat, N. & Todd, T. Prevention of pine wilt of scots pine (Pinus sylvestris) with systemic abamectin injections. Arboric. Urban For. 32, 195–201 (2006).

    Article 

    Google Scholar 

  • 6.

    Gopal., R.M., Pomroy, W.E. & West, D.M. Resistance of field isolates of Trichostrongylus colubriformis and Ostertagia circumcincta to ivermectin. Int. J. Parasitol. 29, 781–786 (1999).

  • 7.

    Barbosa, P. et al. Nematicidal activity of EOs and volatiles derived from portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 42, 8–16 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Andrés, M. F., González-Coloma, A., Sanz, J., Burillo, J. & Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 11, 371–390 (2012).

    Article 

    Google Scholar 

  • 9.

    Harju, A. M. & Venäläinen, M. Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Can. J. For. Res. 36, 1797–1804 (2006).

    Article 

    Google Scholar 

  • 10.

    Schoeppner, A. & Kindl, H. Stilbene synthase (pinosylvine synthase) and its induction by ultraviolet light. FEBS Lett. 108, 349–352 (1979).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Harju, A. M., Venäläinen, M., Laakso, T. & Saranpää, P. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree Physiol. 29, 19–25 (2009).

    Article 

    Google Scholar 

  • 12.

    Rosemann, D., Heller, W. & Sandermann, H. Biochemical plant responses to ozone: II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol. 97, 1280–1286 (1991).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Gehlert, R., Schöppner, A. & Kindl, H. Stilbene synthase from seedlings of Pinus sylvestris: Purification and induction in response to fungal infection. Mol. Plant Microbe. Interact. 3, 444–449 (1990).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Celimene, C., Micales, J., Ferge, L. & Young, R. Efficacy of pinosylvins against white rot and brown rot fungi. Holzforschung 53, 491–497 (1999).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lindberg, L., Willför, S., Hemming, J. & Holmbom, B. Antibacterial effects of hydrophilic knotwood extracts on papermill bacteria. J. Ind. Microbiol. Biotechnol. 31, 137–147 (2004).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Bryant, J. P., Wieland, G. D., Reichardt, P. B., Lewis, V. E. & McCarthy, M. C. Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science 222, 1023–1025 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 17.

    Sullivan, T. P., Crump, D. R., Wieser, H. & Dixon, E. A. Influence of the plant antifeedant, pinosylvin, on suppression of feeding by snowshoe hares. J. Chem. Ecol. 187, 1151–1164 (1992).

    Article 

    Google Scholar 

  • 18.

    Suga, T. et al. Endogenous pine wood nematicidal substances in Pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry 33, 1395–1401 (1993).

  • 19.

    Hwang, H. S., Han, J. Y. & Choi, Y. E. Enhanced accumulation of pinosylvin stilbenes and related gene expression in Pinus strobus after infection of pine wood nematode. Tree Physiol. 41, 1972–1987 (2021).

    Article 

    Google Scholar 

  • 20.

    Ramachandra, R. & Ravishankar, G. A. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101–153 (2002).

    Article 

    Google Scholar 

  • 21.

    Jeandet, P. et al. Phytostilbenes as agrochemicals: Biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat. Prod. Rep. 38, 1282–1329 (2021).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Krisa, S. et al. Stilbene production by Vitis vinifera cell suspension cultures: Methyl jasmonate induction and 13C biolabeling. J. Nat. Prod. 62, 1688–1690 (1999).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Zamboni, A., Vrhovsek, U., Kassemeyer, H. H., Mattivi, F. & Velasco, R. Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45, 63–68 (2006).

    CAS 

    Google Scholar 

  • 24.

    Lijavetzky, D. et al. Synergistic effect of methyl jasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res. Notes 1, 132 (2008).

    Article 

    Google Scholar 

  • 25.

    Belhadj, A. et al. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol. Biochem. 46, 493–499 (2008).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Lange, B. M., Trost, M., Heller, W., Langebartels, C. & Sandermann, H. Jr. Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.). Planta 194, 143–148 (1994).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Mulabagal, V. & Tsay, H. S. Plant cell cultures—An alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Eng. Sci. 2, 29–48 (2004).

    Google Scholar 

  • 28.

    Namdeo, A. G. Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn. Rev. 1, 69–79 (2007).

    CAS 

    Google Scholar 

  • 29.

    Walker, T. S., Bais, H. P. & Vivanco, J. M. Jasmonic acid induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60, 289–293 (2002).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Singh, A. & Dwivedi, P. Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. J. Pharmacogn. Phytochem. 7, 750–757 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Jones, A. M. P. & Saxena, P. K. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8, e76802 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Tang, W. & Newton, R. J. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci. 167, 621–628 (2004).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Laukkanen, H., Rautiainen, L., Taulavuori, E. & Hohtola, A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol. 20, 467–475 (2000).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Litvay, J. D., Verma, D. C. & Johnson, M. A. Influence of loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4, 325–328 (1985).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2-∆∆CT Method. Methods 25, 402–408 (2001).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Togashi, K., Matsunaga, K., Arakawa, Y. & Miyamoto, N. The random dispersal of Bursaphelenchus xylophilus in pine twigs. Trans Jpn. For. Soc. 114, 753 (2003).

    Google Scholar 

  • 37.

    Chiron, H. et al. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol. Biol. 446, 733–745 (2000).

    Article 

    Google Scholar 

  • 38.

    He, J., Zheng, Z. P., Zhu, Q., Guo, F. & Chen, J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules 22, 1801 (2017).

    Article 

    Google Scholar 

  • 39.

    Willför, S., Hemming, J., Reunanen, M. & Holmbom, B. Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57, 359–372 (2003).

    Article 

    Google Scholar 

  • 40.

    Maruyama, T. E. & Hoshi, Y. Progress in somatic embryogenesis of Japanese pines. Front. Plant Sci. 10, 1–15 (2019).

    Article 

    Google Scholar 

  • 41.

    Jorgensen, E. The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa Ait. Can. J. Bot. 39, 1765–1772 (1961).

    CAS 
    Article 

    Google Scholar 

  • Source link