Preloader

Engineering living and regenerative fungal–bacterial biocomposite structures

  • 1.

    Haneef, M. et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292 (2017).

    CAS 

    Google Scholar 

  • 2.

    Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020).

    CAS 

    Google Scholar 

  • 3.

    Elsacker, E. et al. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431 (2020).

    CAS 

    Google Scholar 

  • 4.

    Silverman, J., Cao, H. T. & Cobb, K. Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 38, 119–133 (2020).

    Google Scholar 

  • 5.

    Attias, N. et al. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J. Clean. Prod. 246, 119037 (2020).

    Google Scholar 

  • 6.

    Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    CAS 

    Google Scholar 

  • 7.

    Nguyen, P. Q., Courchesne, N. M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, e1704847 (2018).

    Google Scholar 

  • 8.

    Townsend-Nicholson, A. & Jayasinghe, S. N. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7, 3364–3369 (2006).

    CAS 

    Google Scholar 

  • 9.

    Gonzalez, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).

    CAS 

    Google Scholar 

  • 10.

    Charrier, M. et al. Engineering the S-layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. 8, 181–190 (2019).

    CAS 

    Google Scholar 

  • 11.

    Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    CAS 

    Google Scholar 

  • 12.

    Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    CAS 

    Google Scholar 

  • 13.

    Walker, K. T., Goosens, V. J., Das, A., Graham, A. E. & Ellis, T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Microb. Biotechnol. 12, 611–619 (2019).

    CAS 

    Google Scholar 

  • 14.

    Caro-Astorga, J., Walker, K. T., Herrera, N., Lee, K.-Y. & Ellis, T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat. Commun. 12, 5027 (2021).

    CAS 

    Google Scholar 

  • 15.

    Gerber, L. C., Koehler, F. M., Grass, R. N. & Stark, W. J. Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. Angew. Chem. Int. Ed. 51, 11293–11296 (2012).

    CAS 

    Google Scholar 

  • 16.

    Seker, U. O., Chen, A. Y., Citorik, R. J. & Lu, T. K. Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic–organic interfaces and electrical conductivity. ACS Synth. Biol. 6, 266–275 (2017).

    CAS 

    Google Scholar 

  • 17.

    Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self assembling functional amyloids. ACS Synth. Biol. 6, 1841–1850 (2017).

    Google Scholar 

  • 18.

    Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc. Natl Acad. Sci. USA 114, 2200–2205 (2017).

    CAS 

    Google Scholar 

  • 19.

    Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9, 137–141 (2014).

    CAS 

    Google Scholar 

  • 20.

    Cheng, H. P., Wang, P. M., Chen, J. W. & Wu, W. T. Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol. Appl. Biochem. 35, 125–132 (2002).

    CAS 

    Google Scholar 

  • 21.

    Dorval Courchesne, N.-M., Duraj-Thatte, A., Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. Scalable production of genetically engineered nanofibrous macroscopic materials via filtration. ACS Biomater. Sci. Eng. 3, 733–741 (2016).

    Google Scholar 

  • 22.

    Heveran, C. M. et al. Biomineralization and successive regeneration of engineered living building materials. Matter 2, 481–494 (2020).

    Google Scholar 

  • 23.

    Castro-Alonso, M. J. et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. 6, 126 (2019).

    Google Scholar 

  • 24.

    BioMASON https://biomason.com (2020).

  • 25.

    Botusharova, S., Gardner, D. & Harbottle, M. Augmenting microbially induced carbonate precipitation of soil with the capability to self-heal. J. Geotech. Geoenviron. Eng. 146, 04020010 (2020).

    CAS 

    Google Scholar 

  • 26.

    Chen, Y., Peng, R. & You, Z. Origami of thick panels. Science 349, 396–400 (2015).

    CAS 

    Google Scholar 

  • 27.

    Pinto, P. A. et al. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour. Technol. 111, 261–267 (2012).

    CAS 

    Google Scholar 

  • 28.

    Walterson, A. M. & Stavrinides, J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984 (2015).

    CAS 

    Google Scholar 

  • 29.

    Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).

    CAS 

    Google Scholar 

  • 30.

    McKenzie, G. J. & Craig, N. L. Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol. 6, 39 (2006).

    Google Scholar 

  • 31.

    Furubayashi, M. et al. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nat. Commun. 6, 7534 (2015).

    CAS 

    Google Scholar 

  • 32.

    Ji, B. W. et al. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nat. Methods 16, 731–736 (2019).

    CAS 

    Google Scholar 

  • 33.

    Dong, Y. H., Xu, J. L., Li, X. Z. & Zhang, L. H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl Acad. Sci. USA 97, 3526–3531 (2000).

    CAS 

    Google Scholar 

  • 34.

    Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017).

    CAS 

    Google Scholar 

  • 35.

    Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

    CAS 

    Google Scholar 

  • 36.

    Martinez, L. M., Martinez, A. & Gosset, G. Production of melanins with recombinant microorganisms. Front. Bioeng. Biotechnol. 7, 285 (2019).

    CAS 

    Google Scholar 

  • 37.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 

    Google Scholar 

  • 38.

    Callahan, B. Silva taxonomic training data formatted for DADA2. Silva v.132. Zenodo https://doi.org/10.5281/zenodo.1172783 (2018).

  • 39.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    CAS 

    Google Scholar 

  • 40.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 

    Google Scholar 

  • 41.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 

    Google Scholar 

  • 42.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 

    Google Scholar 

  • 43.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 

    Google Scholar 

  • 44.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 

    Google Scholar 

  • 45.

    Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

    CAS 

    Google Scholar 

  • 46.

    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Google Scholar 

  • 47.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 

    Google Scholar 

  • 48.

    Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Ant. Van Leeuw. 110, 1281–1286 (2017).

    CAS 

    Google Scholar 

  • 49.

    Blin, K. et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 47, D625–D630 (2019).

    CAS 

    Google Scholar 

  • 50.

    Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    CAS 

    Google Scholar 

  • 51.

    Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 

    Google Scholar 

  • 52.

    Johns, N. I. et al. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat. Methods 15, 323–329 (2018).

    CAS 

    Google Scholar 

  • Source link