Rehman, A. et al. Economic perspectives of cotton crop in Pakistan: A time series analysis (1970–2015) (Part 1). J. Saudi Soc. Agric. Sci. (2016).
Dhaliwal, G., Jindal, V. & Mohindru, B. Crop losses due to insect pests: global and Indian scenario. Indian J. Entomol. 77, 165–168 (2015).
Google Scholar
Latif, A. et al. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC. Res. Notes 8, 453 (2015).
Google Scholar
an unconventional method of weed removal. Nasir, I. A. et al. Herbicide-tolerant sugarcane (Saccharum officinarum L.) plants. Turk. J. Biol. 38, 439–449 (2014).
Google Scholar
Barwale, R., Gadwal, V., Zehr, U. & Zehr, B. Prospects for Bt cotton technology in India (2004).
Dong, H., Li, W., Tang, W., Li, Z. & Zhang, D. Increased yield and revenue with a seedling transplanting system for hybrid seed production in Bt cotton. J. Agron. Crop Sci. 191, 116–124 (2005).
Google Scholar
James, C. Global Status of Commercialized Biotech/GM Crops, 2011 Vol. 44 (ISAAA Ithaca, 2011).
Pardo-Lopez, L., Soberon, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).
Google Scholar
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).
Google Scholar
Traore, S. B., Carlson, R. E., Pilcher, C. D. & Rice, M. E. Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron. J. 92, 1027–1035 (2000).
Google Scholar
Bruns, H. A. & Abel, C. A. Nitrogen fertility effects on Bt δ-endotoxin and nitrogen concentrations of maize during early growth. Agron. J. 95, 207–211 (2003).
Busi, R. et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 6, 1218–1221 (2013).
Google Scholar
Duke, S. O. & Powles, S. B. Glyphosate-resistant crops and weeds: now and in the future. AgBioforum 12, 346–357 (2009).
ISAAA. (ISAAA Ithaca, 2016).
Nicolia, A., Manzo, A., Veronesi, F. & Rosellini, D. An overview of the last 10 years of genetically engineered crop safety research. Crit. Rev. Biotechnol. 34, 77–88 (2014).
Google Scholar
Kuiper, H. A., Kleter, G. A., Noteborn, H. P. & Kok, E. J. Substantial equivalence—an appropriate paradigm for the safety assessment of genetically modified foods?. Toxicology 181, 427–431 (2002).
Google Scholar
Puspito, A. N. et al. Transformation and evaluation of Cry1Ac+ Cry2A and GTGene in Gossypium hirsutum L. Front. Plant Sci. 6, 943 (2015).
Google Scholar
Saha, B. C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Salisu, I. B., Shahid, A. A., Yaqoob, A., Rao, A. Q. & Husnain, T. Effect of dietary supplementation of recombinant Cry and Cp4 epsps proteins on haematological indices of growing rabbits. J. Anim. Physiol. Anim. Nutr. 103, 305–316 (2019).
Google Scholar
Rasheed, H., Jaleel, F. & Nisar, M. F. Analyzing the status of heavy metals in irrigation water in suburban areas of Bahawalpur city, Pakistan. AEJAES 14, 732–738 (2014).
Google Scholar
Aktar, W., Sengupta, D. & Chowdhury, A. J. I. t. Impact of pesticides use in agriculture: their benefits and hazards. 2, 1–12 (2009).
Bourguet, D. & Guillemaud, T. The hidden and external costs of pesticide use. In Sustainable Agriculture Reviews, 35–120 (2016).
Iqbal, A. et al. Structure-based prediction of protein–protein interactions between GhWlim5 Domain1 and GhACTIN-1 proteins: a practical evidence with improved fibre strength. J. Plant Biochem. Biotechnol. 30, 1–14 (2020).
Pettigrew, W. & Adamczyk, J. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron. J. 98, 691–697 (2006).
Google Scholar
Kranthi, K. R. et al. Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Curr. Sci. Bangalore 89, 291 (2005).
Google Scholar
Bakhsh, A., Rao, A. Q., Shahid, A. A., Husnain, T. & Riazuddin, S. CaMV 35S is a developmental promoter being temporal and spatial in expression pattern of insecticidal genes (cry1ac & cry2a) in cotton. Aust. J. Basic Appl. Sci. 4, 37–44 (2010).
Google Scholar
Qamar, Z. et al. An overview of genetic transformation of glyphosate resistant gene in Zea mays. Nat. Sci. 13, 80–90 (2015).
Domingo, J. L. & Bordonaba, J. G. A literature review on the safety assessment of genetically modified plants. Environ. Int. 37, 734–742 (2011).
Google Scholar
Hammond, B. G. & Koch, M. S. in Bacillus thuringiensis Biotechnology 305–325 (Springer, 2012).
Koch, M. S. et al. The food and environmental safety of Bt crops. Front. Plant Sci. 6, 283 (2015).
Google Scholar
Dryzga, M., Yano, B., Andrus, A. & Mattsson, J. Evaluation of the safety and nutritional equivalence of a genetically modified cottonseed meal in a 90-day dietary toxicity study in rats. Food Chem. Toxicol. 45, 1994–2004 (2007).
Google Scholar
Hammond, B., Dudek, R., Lemen, J. & Nemeth, M. Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn. Food Chem. Toxicol. 42, 1003–1014 (2004).
Google Scholar
Salisu, I. B., Shahid, A. A., Ali, Q., Rao, A. Q. & Husnain, T. Nutritional assessment of dietary Bt and CP4EPSPS proteins on the serum biochemical changes of rabbits at different developmental stages. Front. Nutr. 5, 49 (2018).
Google Scholar
Mc Lean, M. A review of the environmental safety of the Cry1Ac protein: Center for Environmental Risk Assessment, ILSI Research Foundation. Environ. Biosaf. Res. 10, 27–49 (2011).
Google Scholar
Rahman, M. et al. Mammalian food safety risk assessment of transgenic cotton containing Cry1Ac gene conducted independently in Pakistan. Med. Saf. Glob. Health 4, 1–7 (2015).
Google Scholar
Muzaffar, A. et al. Chloroplast localization of Cry1Ac and Cry2A protein-an alternative way of insect control in cotton. Biol. Res. 48, 1–11 (2015).
Google Scholar

