Preloader

Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo

  • Fry, L. E., Peddle, C. F., Barnard, A. R., McClements, M. E. & MacLaren, R. E. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int. J. Mol. Sci. 21, 277 (2020).

    Google Scholar 

  • Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinnamon, J. R. et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl Acad. Sci. USA 114, E9395–E9402 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montiel-Gonzalez, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanswillemenke, A., Kuzdere, T., Vogel, P., Jekely, G. & Stafforst, T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider, M. F., Wettengel, J., Hoffmann, P. C. & Stafforst, T. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans. Nucleic Acids Res. 42, e87 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel, P., Hanswillemenke, A. & Stafforst, T. Switching protein localization by site-directed RNA editing under control of light. ACS Synth. Biol. 6, 1642–1649 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel, P., Schneider, M. F., Wettengel, J. & Stafforst, T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angew. Chem. Int. Ed. Engl. 53, 6267–6271 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fukuda, M. et al. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 7, 41478 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P. J. & Stafforst, T. Harnessing human ADAR2 for RNA repair – recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797–2808 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Heep, M., Mach, P., Reautschnig, P., Wettengel, J. & Stafforst, T. Applying human ADAR1p110 and ADAR1p150 for site-directed RNA editing-G/C substitution stabilizes guideRNAs against editing. Genes (Basel) 8, 34 (2017).

    Google Scholar 

  • Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Montiel-Gonzalez, M. F., Eisenberg, E. & Rosenthal, J. J. C. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 15, 104–114 (2018).

    PubMed 

    Google Scholar 

  • Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ihry, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Beaudry, D. & Perreault, J. P. An efficient strategy for the synthesis of circular RNA molecules. Nucleic Acids Res. 23, 3064–3066 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wahlstedt, H. & Ohman, M. Site-selective versus promiscuous A-to-I editing. Wiley Interdiscip. Rev. RNA 2, 761–771 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Gallo, A., Vukic, D., Michalik, D., O’Connell, M. A. & Keegan, L. P. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265–1278 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Eggington, J. M., Greene, T. & Bass, B. L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    PubMed 

    Google Scholar 

  • Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, N. et al. A structural determinant required for RNA editing. Nucleic Acids Res. 39, 5669–5681 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Floquet, C., Deforges, J., Rousset, J. P. & Bidou, L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39, 3350–3362 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Kern, S. E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl Acad. Sci. USA 98, 9300–9305 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D. et al. Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol. Genet. Metab. 99, 62–71 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samaridou, E., Heyes, J. & Lutwyche, P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv. Drug Deliv. Rev. 154–155, 37–63 (2020).

    PubMed 

    Google Scholar 

  • Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y., Zhang, H. & Wei, W. Simultaneous generation of multi-gene knockouts in human cells. FEBS Lett. 590, 4343–4353 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link