Preloader

Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting

  • 1.

    Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Rosenberg, S. A. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat. Rev. Clin. Oncol. 8, 577–585 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Gong, N., Sheppard, N. C., Billingsley, M. M., June, C. H. & Mitchell, M. J. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Andersen, R. et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumour-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Dudley, M. E. Cancer regression and autoimmunity in patients after clonal repopulation with antitumour lymphocytes. Science 298, 850–854 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Rosenberg, S., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumour-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Yamamoto, T. N., Kishton, R. J. & Restifo, N. P. Developing neoantigen-targeted T cell–based treatments for solid tumours. Nat. Med. 25, 1488–1499 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Garber, K. Pursuit of tumour-infiltrating lymphocyte immunotherapy speeds up. Nat. Biotechnol. 37, 969–971 (2019).

    PubMed 

    Google Scholar 

  • 11.

    Borch, T. H. et al. Future role for adoptive T-cell therapy in checkpoint inhibitor-resistant metastatic melanoma. J. Immunother. Cancer 8, 1–7 (2020).

    Google Scholar 

  • 12.

    Kverneland, A. H. et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 11, 2092–2105 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Valpione, S. et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    CAS 

    Google Scholar 

  • 15.

    Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    CAS 

    Google Scholar 

  • 16.

    Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumour-reactive CD8 T cells in human solid tumours. Nat. Commun. 9, 2724 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Poschke, I. et al. A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunol. Immunother. 63, 1061–1071 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Stevanović, S. et al. A phase II study of tumour-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    PubMed 

    Google Scholar 

  • 20.

    Mishra, A. et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumour cells. Proc. Natl Acad. Sci. USA 117, 16839–16847 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Individualized treatments for the many. Nat. Biomed. Eng. 3, 755–756 (2019).

  • 22.

    Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Hall, M. L. et al. Expansion of tumour-infiltrating lymphocytes (TIL) from human pancreatic tumours. J. Immunother. Cancer 4, 1–12 (2016).

    PubMed Central 

    Google Scholar 

  • 24.

    Garaud, S. et al. Tumour-infiltrating B cells signal functional humoral immune responses in breast cancer. JCI Insight 4, e129641 (2019).

    PubMed Central 

    Google Scholar 

  • 25.

    Wagner, P. et al. Detection and functional analysis of tumour infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann. Surg. Oncol. 15, 2310–2317 (2008).

    PubMed 

    Google Scholar 

  • 26.

    Salot, S. et al. Large scale expansion of Vγ9Vδ2 T lymphocytes from human peripheral blood mononuclear cells after a positive selection using MACS ‘TCR γ/δ + T cell isolation kit’. J. Immunol. Methods 347, 12–18 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Geens, M. et al. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. 22, 733–742 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Faraghat, S. A. et al. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc. Natl Acad. Sci. USA 114, 4591–4596 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sutermaster, B. A. & Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Sci. Rep. 9, 227 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Mair, B. et al. High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat. Biomed. Eng. 3, 796–805 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Moore, D. K. et al. Isolation of B-cells using Miltenyi MACS bead isolation kits. PLoS ONE 14, e0213832 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Witek, M. A., Freed, I. M. & Soper, S. A. Cell separations and sorting. Anal. Chem. 92, 105–131 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Zhou, Y. et al. Evaluation of single-cell cytokine secretion and cell–cell interactions with a hierarchical loading microwell chip. Cell Rep. 31, 107574 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Segaliny, A. I. et al. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip 18, 3733–3749 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Lin, E. et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumour cells. Cell Syst. 5, 295–304.e4 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Fachin, F. et al. Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumour cells. Sci. Rep. 7, 10936 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Zhao, W. et al. Tumour antigen-independent and cell size variation-inclusive enrichment of viable circulating tumour cells. Lab Chip 19, 1860–1876 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Alix-Panabières, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    PubMed 

    Google Scholar 

  • 39.

    Li, P. & Ai, Y. Label-free multivariate biophysical phenotyping-activated acoustic sorting at the single-cell level. Anal. Chem. 93, 4108–4117 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Nawaz, A. A. et al. Acoustofluidic fluorescence activated cell sorter. Anal. Chem. 87, 12051–12058 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Cheng, Z., Wu, X., Cheng, J. & Liu, P. Microfluidic fluorescence-activated cell sorting (μFACS) chip with integrated piezoelectric actuators for low-cost mammalian cell enrichment. Microfluid. Nanofluidics 21, 9 (2017).

    Google Scholar 

  • 42.

    Nie, X. et al. High-throughput dielectrophoretic cell sorting assisted by cell sliding on scalable electrode tracks made ofconducting-PDMS. Sens. Actuators B 327, 128873 (2021).

    Google Scholar 

  • 43.

    de Wijs, K. et al. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting. Lab Chip 17, 1287–1296 (2017).

    PubMed 

    Google Scholar 

  • 44.

    Jing, Y. et al. Negative selection of hematopoietic progenitor cells by continuous magnetophoresis. Exp. Hematol. 35, 662–672 (2007).

    PubMed 

    Google Scholar 

  • 45.

    Lin, S. et al. A flyover style microfluidic chip for highly purified magnetic cell separation. Biosens. Bioelectron. 129, 175–181 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Murray, C. et al. Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting. Lab Chip 18, 2396–2409 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Wang, Z. et al. Ultrasensitive and rapid quantification of rare tumourigenic stem cells in hPSC-derived cardiomyocyte populations. Sci. Adv. 6, eaay7629 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Labib, M. et al. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat. Biomed. Eng. 5, 41–52 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E. & Badie, B. Chimeric antigen receptors T cell therapy in solid tumour: challenges and clinical applications. Front. Immunol. 8, 1850 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Ma, Q., Wang, Y., Lo, A. S. Y., Gomes, E. M. & Junghans, R. P. Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J. Biomed. Biotechnol. 2010, 386545 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Canale, F. P. et al. CD39 expression defines cell exhaustion in tumour-infiltrating CD8+ T cells. Cancer Res. 78, 115–128 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Kortekaas, K. E. et al. CD39 identifies the CD4+ tumour-specific T-cell population in human cancer. Cancer Immunol. Res. 8, 1311–1321 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumour control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Siddiqui, I. et al. Intratumoural Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumour control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    CAS 

    Google Scholar 

  • 56.

    Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Carmona, S. J., Siddiqui, I., Bilous, M., Held, W. & Gfeller, D. Deciphering the transcriptomic landscape of tumour-infiltrating CD8 lymphocytes in B16 melanoma tumours with single-cell RNA-Seq. OncoImmunology 9, 1737369 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Jansen, C. S. et al. An intra-tumoural niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Held, W., Siddiqui, I., Schaeuble, K. & Speiser, D. E. Intratumoural CD8+ T cells with stem cell–like properties: implications for cancer immunotherapy. Sci. Transl. Med. 11, eaay6863 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Moesta, A. K., Li, X.-Y. & Smyth, M. J. Targeting CD39 in cancer. Nat. Rev. Immunol. 20, 739–755 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Takenaka, M. C., Robson, S. & Quintana, F. J. Regulation of the T cell response by CD39. Trends Immunol. 37, 427–439 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Nihei, O. K., de Carvalho, A. C. C., Savino, W. & Alves, L. A. Pharmacologic properties of P2Z/P2X7receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 96, 996–1005 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Kuhny, M., Hochdörfer, T., Ayata, C. K., Idzko, M. & Huber, M. CD39 is a negative regulator of P2X7-mediated inflammatory cell death in mast cells. Cell Commun. Signal. 12, 40 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Bono, M. R., Fernández, D., Flores-Santibáñez, F., Rosemblatt, M. & Sauma, D. CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression. FEBS Lett. 589, 3454–3460 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Ganesan, A.-P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Sun, X. et al. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/Entpd1 null mice. Hepatology 57, 205–216 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Scholz, G. et al. Modulation of mTOR signalling triggers the formation of stem cell-like memory T cells. EBioMedicine 4, 50–61 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumour immunity. Immunity 34, 541–553 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Biasco, L. et al. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci. Transl. Med. 7, 273ra13 (2015).

    PubMed 

    Google Scholar 

  • 77.

    Rohaan, M. W., van den Berg, J. H., Kvistborg, P. & Haanen, J. B. A. G. Adoptive transfer of tumour-infiltrating lymphocytes in melanoma: a viable treatment option. J. Immunother. Cancer 6, 102 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Seliktar-Ofir, S. et al. Selection of shared and neoantigen-reactive T cells for adoptive cell therapy based on CD137 separation. Front. Immunol. 8, 1211 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Lee, H. J. et al. Expansion of tumour-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer. Oncotarget 8, 113345–113359 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Hurtado, M. O. et al. Tumour infiltrating lymphocytes expanded from pediatric neuroblastoma display heterogeneity of phenotype and function. PLoS ONE 14, e0216373 (2019).

    Google Scholar 

  • 81.

    Lindenberg, M. A. et al. Treatment with tumour-infiltrating lymphocytes in advanced melanoma: evaluation of early clinical implementation of an advanced therapy medicinal product. J. Immunother. 41, 413–425 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Lindenberg, M. et al. Evaluating different adoption scenarios for TIL-therapy and the influence on its (early) cost-effectiveness. BMC Cancer 20, 712 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Lopes, A. G., Noel, R. & Sinclair, A. Cost analysis of vein-to-vein CAR T-cell therapy: automated manufacturing and supply chain. Cell Gene Ther. Insights 6, 487–510 (2020).

    Google Scholar 

  • 84.

    ten Ham, R. M. T. et al. What does cell therapy manufacturing cost? A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings. Cytotherapy 22, 388–397 (2020).

    PubMed 

    Google Scholar 

  • Source link