Preloader

Efficacy and side effects of bio-fabricated sardine fish scale silver nanoparticles against malarial vector Anopheles stephensi

  • 1.

    Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).

    Article 

    Google Scholar 

  • 2.

    World Health Organization. Global vector control response 2017–2030. Licence: CC BY-NC-SA 3.0 IGO (2017).

  • 3.

    Jia, Q., Dahms, H. U. & Wang, L. Detection of metallothionein proteins by enzyme-linked immunosorbent assay (ELISA). Curr. Pharm. Biotechnol. 21, 544–554 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Radhika, J. & Sathya, P. In vitro macrofilaricidal activity of traditional medicinal plants. World. J. Pharm. Pharm. Sci. 3, 1034–1042 (2014).

    Google Scholar 

  • 5.

    Suresh, U. et al. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol. Mol. Plant. Pathol. 101, 225–235 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Tanur, S. M., Ahmaruzzaman, A. K. & Sil, B. A. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds. Spect. Acta. Part A Mol. Biomol. Spectros. 131, 413–423 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Benelli, G. F. et al. Mosquito control with green nanopesticides: Towards the One Health approach? A review of non-target effects. Environ. Sci. Pollut. Res. 25, 10184–10206 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Huang, H., Jia, Q. Y., Jing, W., Dahms, H. U. & Wang, L. Screening strains for microbial biosorption technology of cadmium. Chemosphere 251, 126428 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Kokura, S. et al. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6, 570–574 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Murugan, K. et al. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 115, 651–662 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Murugan, K. et al. Synthesis of nanoparticles using chitosan from crab shells: Implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol. Environ. Saf. 132, 318–328 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Sujitha, V. et al. Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat. Toxicol. 188, 100–108 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Kalimuthu, K. et al. Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma—Synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785, 359–372 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Murugan, K. et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: A novel route to control the coastal malaria vector Anopheles sundaicus?. Hydrobiologia 797, 335–350 (2017).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Dahms, H. U. New challenges by toxic threats to the environment. Environ. Toxicol. Stud. J. 2, 7 (2018).

    Google Scholar 

  • 16.

    Lebrato, M. et al. Global variability in seawater Mg: Ca and Sr: Ca ratios in the modern ocean. PNAS 267, 115460 (2020).

    Google Scholar 

  • 17.

    Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Cano-Rocabayera, O., Vargas-Amengual, S., Aranda, C., De Sostoa, A. & Maceda-Veiga, A. Mosquito larvae consumption in turbid waters: The role of the type of turbidity and the larval stage in native and invasive fish. Hydrobiologia 847, 1371–1381 (2020).

    Article 

    Google Scholar 

  • 19.

    Murugan, K. et al. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol. Res. 114, 2243–2253 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Kalimuthu, K. et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf. Environ. Prot. 109, 82–96 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Murugan, K. et al. Mangrove helps: Sonneratia alba-synthesized silver nanoparticles magnify guppy fish predation against Aedes aegypti young instars and down-regulate the expression of envelope (E) gene in dengue virus (Serotype DEN-2). J. Clust. Sci. 28, 437–461 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Li, N. et al. Lead accumulation, oxidative damage and histopathological alteration in testis and accessory glands of the freshwater crab, Sinopotamon henanense, induced by acute lead exposure. Ecotoxicol. Environ. Saf. 117, 20–27 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Liu, J., Dahms, H. U. & Wang, L. Mitigative effects of zinc on cadmium-induced reproductive toxicity in the male freshwater crab Sinopotamon henanense. Environ. Sci. Pollut. Res. 27, 16282–16292 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Hong J. F., Ouddane B., Hwang J. S. & Dahms, H. U. In silico assessment of human health risks caused by cyanotoxins from cyanobacteria. Biocell 45(1), 65–77 (2021).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Valavanidis, A., Vlachogianni, T. & Fiotakis, K. L. S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10, 3886–3907 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Zhou, Y., Jing, W., Dahms, H. U., Hwang, J. S. & Wang, L. Oxidative damage, ultrastructural alterations and gene expressions of hemocytes in the freshwater crab Sinopotamon henanense exposed to cadmium. Ecotoxicol. Environ. Saf. 138, 130–138 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Li, B. et al. Biogenic selenium and its hepatoprotective activity. Sci. Rep. 7, 1–11 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Lin, Y., Huang, J. J., Dahms, H. U., Zhen, J. J. & Ying, X. P. Cell damage and apoptosis in the hepatopancreas of Eriocheir sinensis induced by cadmium. Aquat. Toxicol. 190, 190–198 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Livingstone, D. R. Contaminant stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656–666 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kobeticova, K. & Cerny, R. Ecotoxicology of building materials: A critical review of recent studies. J. Clean. Prod. 165, 500–508 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Grillo, R., Fraceto, L. F., Amorim, M. J., Scott-Fordsmand, J. J., Schoonjans, R. & Chaudhry, Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J. Hazard. Mater. 404(Part A), 124148 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Muthumari, K., Anand, M. & Maruthupandy, M. Collagen extract from marine finfish scales as a potential mosquito larvicide. Protein. J. 35, 391–400 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Dinesh, D. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol. Res. 114, 1519–1529 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Murugan, K. et al. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 153, 129–138 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Mahesh Kumar, P. et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol. Res. 115, 751–759 (2015).

    Article 

    Google Scholar 

  • 36.

    Subramaniam, J.; Murugan, K. Evaluation of larvicidal, pupicidal, repellent, and adulticidal activity of Myristica fragrans (Family: Myristicaceae) against malarial vector Anopheles stephensi. In Proceedings of the National Conference on Insect Diversity and Systematics: Special Emphasis on Molecular Approaches 1–6 (2013).

  • 37.

    Subramaniam, J., Murugan, K. & Kovendan, K. Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). J. Biopest. 5, 163 (2012).

    Google Scholar 

  • 38.

    Subramaniam, J., Kovendan, K., Mahesh Kumar, P., Murugan, K. & Walton, W. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi. J. Biol. Sci. 19, 503–509 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Murugan, K. et al. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on nontarget organisms in the aquatic environment. Ecotoxicol. Environ. Saf. 132, 318–328 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Murugan, K. et al. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: Genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol. Res. 115, 1071–1083 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Mullai, K. & Jebanesan, A. Larvicidal and ovicidal activity of the leaf extract of two cucurbitaceous plants against the filarial vector, Culex quinquefasciatus Say. Ind. J. Environ. Ecoplan. 12, 611–615 (2006).

    CAS 

    Google Scholar 

  • 42.

    Panneerselvam, C. & Murugan, K. Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles species (Diptera: Culicidae). Parasitol. Res. 112, 679–692 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Kovendan, K., Murugan, K., Kumar, P. M., Thiyagarajan, P. & William, S. J. Ovicidal, repellent, adulticidal, and field evaluations of plant extract against dengue, malaria, and filarial vectors. Parasitol. Res. 112, 1205–1219 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Murugan, K. et al. Ecofriendly drugs from the marine environment: Spongeweed synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ. Sci. Pollut. Res. 23, 16671–16685 (2016).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Subramaniam, J. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: Towards an integrative approach?. Environ. Sci. Pollut. Res. 22, 20067–20083 (2015).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Subramaniam, J. et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: High antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Pollut. Res. 23, 7543–7558 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Subramaniam, J. et al. Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae?. J. Clust. Sci. 28, 413–436 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Gupta, P. & Verma, S. K. Evaluation of genotoxicity induced by herbicide pendimethalin in fresh water fish Clarias batrachus (Linn.) and possible role of oxidative stress in induced DNA damage. Drug Chem. Toxicol. 1–10 (2020).

  • 49.

    Chen, C. Y., Lu, T. H., Yang, Y. F. & Liao, C. M. Toxicokinetic/toxicodynamic-based risk assessment of freshwater fish health posed by microplastics at environmentally relevant concentrations. Sci. Total. Environ. 756, 144013 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Bao, S., Tang, W. & Fang, T. Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish. Chemosphere 249, 126172 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Finney, D. J. Probit Analysis 68–72 (Cambridge University Press, 1971).

    MATH 

    Google Scholar 

  • 52.

    Alder, H. L. & Rossler, E. B. Introduction to Probability and Statistics 6th edn, 246 (Freeman, 1977).

    Google Scholar 

  • 53.

    Behzadi, S. et al. Determination of nanoparticles using UV-Vis spectra. Nanoscale 7, 5134–5139 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Jena, J., Pradhan, N., Dash, B. P., Sukla, L. B. & Panda, P. K. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int. J. Nanomater. Biostruct. 3, 1–8 (2013).

    Google Scholar 

  • 55.

    Khoshnamvand, M. et al. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere 258, 127346 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Sivapriyajothi, S., Kumar, P. M., Kovendan, K., Subramaniam, J. & Murugan, K. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J. Entomol. Acarol. Res. 29, 77–84 (2014).

    Article 

    Google Scholar 

  • 57.

    Fatema, S., Shirsat, M., Farooqui, M. & Pathan, M. A. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimens. 10, 163–168 (2019).

    CAS 

    Google Scholar 

  • 58.

    Santhoshkumar, T. et al. Synthesis of silver nanoparticles using Nelumbonucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 108, 693–702 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    Anal, K. J. & Kamal, P. Synthesis of silver nanoparticles employing fish processing discard: An eco-amenable approach. J. Chin. Adv. Mater. Soc. 3, 179–185 (2014).

    Google Scholar 

  • 60.

    Parthiban, E., Manivannan, N., Ramanibai, R. & Mathivanan, N. Green synthesis of silver—nanoparticles from Annona reticulate leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol. Rep. 20, e00297 (2018).

    Google Scholar 

  • 61.

    Priyadarshini, K. A. et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111, 997–1006 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 62.

    Mourdikoudis, S., Pallares, R. M., Nguyen, T. K. & Than, H. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Rev. Nanoscale. 10, 12871–12934 (2018).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Begum, R. et al. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels. A review. Crit. Rev. Anal. Chem. 48, 503–516 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Rezazadeh, N. H., Buazar, F. & Matroodi, S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci. Rep. 10, 1–13 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 66.

    Rajeshkumar, S. & Sandhiya, D. Biomedical applications of zinc oxide nanoparticles synthesized using eco-friendly method. In Nanoparticles and their Biomedical Applications 65–93 (2020).

  • 67.

    Bankar, A., Joshi, B., Kumar, A. R. & Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll. Surf. A. 368, 58–63 (2010).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Suganya, A., Murugan, K., Kovendan, K., Mahesh Kumar, P. & Hwang, J. S. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol. Res. 112, 1385–1397 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 69.

    Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res. 115, 23–34 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—A brief review. Enzyme Microb. Technol. 95, 58–68 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Madhiyazhagan, P. et al. Sargassum muticum-synthesized silver nanoparticles: An effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 114, 4305–4317 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Rajaganesh, R. et al. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents?. Res. Vet. Sci. 109, 40–51 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Vineela, D., Janardana Reddy, S. & Kiran Kumar, B. Preparation, synthesis and characterisation of silver nanoparticles by fish scales of Catla catla and their antibacterial activity against fish pathogen, Aeromonas veronii. Eur. J. Pharm. Med. Res. 4, 537–545 (2017).

    Google Scholar 

  • 74.

    Company, R. et al. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res. 58, 377–381 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Maria, V. L. & Bebianno, M. J. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 154, 56–63 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Yilmaz, R., Atessahin, A., Sahna, E., Karahan, I. & Ozer, S. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology 218, 164–171 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Felix, R. et al. Review evaluating the in vitro potential of natural extracts to protect lipids from oxidative damage. Antioxidants. 9, 231 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Kong, X. H., Wang, G. Z. & Li, S. J. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress. Chin. J. Oceanol. Limnol. 25, 221–226 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Source link