Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).
Google Scholar
World Health Organization. Global vector control response 2017–2030. Licence: CC BY-NC-SA 3.0 IGO (2017).
Jia, Q., Dahms, H. U. & Wang, L. Detection of metallothionein proteins by enzyme-linked immunosorbent assay (ELISA). Curr. Pharm. Biotechnol. 21, 544–554 (2020).
Google Scholar
Radhika, J. & Sathya, P. In vitro macrofilaricidal activity of traditional medicinal plants. World. J. Pharm. Pharm. Sci. 3, 1034–1042 (2014).
Suresh, U. et al. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol. Mol. Plant. Pathol. 101, 225–235 (2018).
Google Scholar
Tanur, S. M., Ahmaruzzaman, A. K. & Sil, B. A. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds. Spect. Acta. Part A Mol. Biomol. Spectros. 131, 413–423 (2014).
Google Scholar
Benelli, G. F. et al. Mosquito control with green nanopesticides: Towards the One Health approach? A review of non-target effects. Environ. Sci. Pollut. Res. 25, 10184–10206 (2018).
Google Scholar
Huang, H., Jia, Q. Y., Jing, W., Dahms, H. U. & Wang, L. Screening strains for microbial biosorption technology of cadmium. Chemosphere 251, 126428 (2020).
Google Scholar
Kokura, S. et al. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6, 570–574 (2010).
Google Scholar
Murugan, K. et al. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 115, 651–662 (2016).
Google Scholar
Murugan, K. et al. Synthesis of nanoparticles using chitosan from crab shells: Implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol. Environ. Saf. 132, 318–328 (2016).
Google Scholar
Sujitha, V. et al. Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat. Toxicol. 188, 100–108 (2017).
Google Scholar
Kalimuthu, K. et al. Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma—Synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785, 359–372 (2017).
Google Scholar
Murugan, K. et al. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: A novel route to control the coastal malaria vector Anopheles sundaicus?. Hydrobiologia 797, 335–350 (2017).
Google Scholar
Dahms, H. U. New challenges by toxic threats to the environment. Environ. Toxicol. Stud. J. 2, 7 (2018).
Lebrato, M. et al. Global variability in seawater Mg: Ca and Sr: Ca ratios in the modern ocean. PNAS 267, 115460 (2020).
Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).
Google Scholar
Cano-Rocabayera, O., Vargas-Amengual, S., Aranda, C., De Sostoa, A. & Maceda-Veiga, A. Mosquito larvae consumption in turbid waters: The role of the type of turbidity and the larval stage in native and invasive fish. Hydrobiologia 847, 1371–1381 (2020).
Google Scholar
Murugan, K. et al. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol. Res. 114, 2243–2253 (2015).
Google Scholar
Kalimuthu, K. et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf. Environ. Prot. 109, 82–96 (2017).
Google Scholar
Murugan, K. et al. Mangrove helps: Sonneratia alba-synthesized silver nanoparticles magnify guppy fish predation against Aedes aegypti young instars and down-regulate the expression of envelope (E) gene in dengue virus (Serotype DEN-2). J. Clust. Sci. 28, 437–461 (2017).
Google Scholar
Li, N. et al. Lead accumulation, oxidative damage and histopathological alteration in testis and accessory glands of the freshwater crab, Sinopotamon henanense, induced by acute lead exposure. Ecotoxicol. Environ. Saf. 117, 20–27 (2015).
Google Scholar
Liu, J., Dahms, H. U. & Wang, L. Mitigative effects of zinc on cadmium-induced reproductive toxicity in the male freshwater crab Sinopotamon henanense. Environ. Sci. Pollut. Res. 27, 16282–16292 (2020).
Google Scholar
Hong J. F., Ouddane B., Hwang J. S. & Dahms, H. U. In silico assessment of human health risks caused by cyanotoxins from cyanobacteria. Biocell 45(1), 65–77 (2021).
Google Scholar
Valavanidis, A., Vlachogianni, T. & Fiotakis, K. L. S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 10, 3886–3907 (2013).
Google Scholar
Zhou, Y., Jing, W., Dahms, H. U., Hwang, J. S. & Wang, L. Oxidative damage, ultrastructural alterations and gene expressions of hemocytes in the freshwater crab Sinopotamon henanense exposed to cadmium. Ecotoxicol. Environ. Saf. 138, 130–138 (2017).
Google Scholar
Li, B. et al. Biogenic selenium and its hepatoprotective activity. Sci. Rep. 7, 1–11 (2017).
Google Scholar
Lin, Y., Huang, J. J., Dahms, H. U., Zhen, J. J. & Ying, X. P. Cell damage and apoptosis in the hepatopancreas of Eriocheir sinensis induced by cadmium. Aquat. Toxicol. 190, 190–198 (2017).
Google Scholar
Livingstone, D. R. Contaminant stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42, 656–666 (2001).
Google Scholar
Kobeticova, K. & Cerny, R. Ecotoxicology of building materials: A critical review of recent studies. J. Clean. Prod. 165, 500–508 (2017).
Google Scholar
Grillo, R., Fraceto, L. F., Amorim, M. J., Scott-Fordsmand, J. J., Schoonjans, R. & Chaudhry, Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J. Hazard. Mater. 404(Part A), 124148 (2021).
Google Scholar
Muthumari, K., Anand, M. & Maruthupandy, M. Collagen extract from marine finfish scales as a potential mosquito larvicide. Protein. J. 35, 391–400 (2016).
Google Scholar
Dinesh, D. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol. Res. 114, 1519–1529 (2015).
Google Scholar
Murugan, K. et al. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 153, 129–138 (2015).
Google Scholar
Mahesh Kumar, P. et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol. Res. 115, 751–759 (2015).
Google Scholar
Subramaniam, J.; Murugan, K. Evaluation of larvicidal, pupicidal, repellent, and adulticidal activity of Myristica fragrans (Family: Myristicaceae) against malarial vector Anopheles stephensi. In Proceedings of the National Conference on Insect Diversity and Systematics: Special Emphasis on Molecular Approaches 1–6 (2013).
Subramaniam, J., Murugan, K. & Kovendan, K. Larvicidal and pupcidal efficacy of Momordica charantia leaf extract and bacterial insecticide, Bacillus thuringiensis against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae). J. Biopest. 5, 163 (2012).
Subramaniam, J., Kovendan, K., Mahesh Kumar, P., Murugan, K. & Walton, W. Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi. J. Biol. Sci. 19, 503–509 (2012).
Google Scholar
Murugan, K. et al. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on nontarget organisms in the aquatic environment. Ecotoxicol. Environ. Saf. 132, 318–328 (2016).
Google Scholar
Murugan, K. et al. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: Genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol. Res. 115, 1071–1083 (2016).
Google Scholar
Mullai, K. & Jebanesan, A. Larvicidal and ovicidal activity of the leaf extract of two cucurbitaceous plants against the filarial vector, Culex quinquefasciatus Say. Ind. J. Environ. Ecoplan. 12, 611–615 (2006).
Google Scholar
Panneerselvam, C. & Murugan, K. Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles species (Diptera: Culicidae). Parasitol. Res. 112, 679–692 (2013).
Google Scholar
Kovendan, K., Murugan, K., Kumar, P. M., Thiyagarajan, P. & William, S. J. Ovicidal, repellent, adulticidal, and field evaluations of plant extract against dengue, malaria, and filarial vectors. Parasitol. Res. 112, 1205–1219 (2013).
Google Scholar
Murugan, K. et al. Ecofriendly drugs from the marine environment: Spongeweed synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ. Sci. Pollut. Res. 23, 16671–16685 (2016).
Google Scholar
Subramaniam, J. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: Towards an integrative approach?. Environ. Sci. Pollut. Res. 22, 20067–20083 (2015).
Google Scholar
Subramaniam, J. et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: High antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Pollut. Res. 23, 7543–7558 (2016).
Google Scholar
Subramaniam, J. et al. Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae?. J. Clust. Sci. 28, 413–436 (2017).
Google Scholar
Gupta, P. & Verma, S. K. Evaluation of genotoxicity induced by herbicide pendimethalin in fresh water fish Clarias batrachus (Linn.) and possible role of oxidative stress in induced DNA damage. Drug Chem. Toxicol. 1–10 (2020).
Chen, C. Y., Lu, T. H., Yang, Y. F. & Liao, C. M. Toxicokinetic/toxicodynamic-based risk assessment of freshwater fish health posed by microplastics at environmentally relevant concentrations. Sci. Total. Environ. 756, 144013 (2020).
Google Scholar
Bao, S., Tang, W. & Fang, T. Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish. Chemosphere 249, 126172 (2020).
Google Scholar
Finney, D. J. Probit Analysis 68–72 (Cambridge University Press, 1971).
Google Scholar
Alder, H. L. & Rossler, E. B. Introduction to Probability and Statistics 6th edn, 246 (Freeman, 1977).
Behzadi, S. et al. Determination of nanoparticles using UV-Vis spectra. Nanoscale 7, 5134–5139 (2015).
Google Scholar
Jena, J., Pradhan, N., Dash, B. P., Sukla, L. B. & Panda, P. K. Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int. J. Nanomater. Biostruct. 3, 1–8 (2013).
Khoshnamvand, M. et al. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere 258, 127346 (2020).
Google Scholar
Sivapriyajothi, S., Kumar, P. M., Kovendan, K., Subramaniam, J. & Murugan, K. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J. Entomol. Acarol. Res. 29, 77–84 (2014).
Google Scholar
Fatema, S., Shirsat, M., Farooqui, M. & Pathan, M. A. Biosynthesis of silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimens. 10, 163–168 (2019).
Google Scholar
Santhoshkumar, T. et al. Synthesis of silver nanoparticles using Nelumbonucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 108, 693–702 (2011).
Google Scholar
Anal, K. J. & Kamal, P. Synthesis of silver nanoparticles employing fish processing discard: An eco-amenable approach. J. Chin. Adv. Mater. Soc. 3, 179–185 (2014).
Parthiban, E., Manivannan, N., Ramanibai, R. & Mathivanan, N. Green synthesis of silver—nanoparticles from Annona reticulate leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol. Rep. 20, e00297 (2018).
Priyadarshini, K. A. et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111, 997–1006 (2012).
Google Scholar
Mourdikoudis, S., Pallares, R. M., Nguyen, T. K. & Than, H. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Rev. Nanoscale. 10, 12871–12934 (2018).
Google Scholar
Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).
Google Scholar
Begum, R. et al. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels. A review. Crit. Rev. Anal. Chem. 48, 503–516 (2018).
Google Scholar
Rezazadeh, N. H., Buazar, F. & Matroodi, S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci. Rep. 10, 1–13 (2020).
Google Scholar
Rajeshkumar, S. & Sandhiya, D. Biomedical applications of zinc oxide nanoparticles synthesized using eco-friendly method. In Nanoparticles and their Biomedical Applications 65–93 (2020).
Bankar, A., Joshi, B., Kumar, A. R. & Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Coll. Surf. A. 368, 58–63 (2010).
Google Scholar
Suganya, A., Murugan, K., Kovendan, K., Mahesh Kumar, P. & Hwang, J. S. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol. Res. 112, 1385–1397 (2013).
Google Scholar
Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res. 115, 23–34 (2016).
Google Scholar
Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—A brief review. Enzyme Microb. Technol. 95, 58–68 (2016).
Google Scholar
Madhiyazhagan, P. et al. Sargassum muticum-synthesized silver nanoparticles: An effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 114, 4305–4317 (2015).
Google Scholar
Rajaganesh, R. et al. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents?. Res. Vet. Sci. 109, 40–51 (2016).
Google Scholar
Vineela, D., Janardana Reddy, S. & Kiran Kumar, B. Preparation, synthesis and characterisation of silver nanoparticles by fish scales of Catla catla and their antibacterial activity against fish pathogen, Aeromonas veronii. Eur. J. Pharm. Med. Res. 4, 537–545 (2017).
Company, R. et al. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Mar. Environ. Res. 58, 377–381 (2004).
Google Scholar
Maria, V. L. & Bebianno, M. J. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 154, 56–63 (2011).
Google Scholar
Yilmaz, R., Atessahin, A., Sahna, E., Karahan, I. & Ozer, S. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology 218, 164–171 (2006).
Google Scholar
Felix, R. et al. Review evaluating the in vitro potential of natural extracts to protect lipids from oxidative damage. Antioxidants. 9, 231 (2020).
Google Scholar
Kong, X. H., Wang, G. Z. & Li, S. J. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress. Chin. J. Oceanol. Limnol. 25, 221–226 (2007).
Google Scholar

