Preloader

Effect of hydrophobic moment on membrane interaction and cell penetration of apolipoprotein E-derived arginine-rich amphipathic α-helical peptides

  • Xie, J. et al. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front. Pharmacol. 11, 697 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borrelli, A., Tornesello, A. L., Tornesello, M. L. & Buonaguro, F. M. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 23, 295 (2018).

    PubMed Central 

    Google Scholar 

  • Zuconelli, C. R. et al. Modulation of Orai1 by cationic peptides triggers their direct cytosolic uptake. Biochim. Biophys. Acta Biomembr. 1862, 183155 (2020).

    PubMed 

    Google Scholar 

  • Wang, T. Y. et al. Membrane oxidation enables the cytosolic entry of polyarginine cell-penetrating peptides. J. Biol. Chem. 291, 7902–7914 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allolio, C. et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. USA 115, 11923–11928 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herce, H. D., Garcia, A. E. & Cardoso, M. C. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J. Am. Chem. Soc. 136, 17459–17467 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J. Control. Release 309, 106–124 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, X., Liu, H., Li, A., Ji, S. & Fei, H. Hydrophobicity-tuned anion responsiveness underlies endosomolytic cargo delivery mediated by amphipathic vehicle peptides. J. Biol. Chem. 297, 101364 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalafatovic, D. & Giralt, E. Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity. Molecules 22, 1929 (2017).

    PubMed Central 

    Google Scholar 

  • Peraro, L. & Kritzer, J. A. Emerging methods and design principles for cell-penetrant peptides. Angew. Chem. Int. Ed. Engl. 57, 11868–11881 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohgita, T. et al. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. Biochim. Biophys. Acta Biomembr. 1861, 541–549 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Takechi-Haraya, Y. et al. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides. Biochim. Biophys. Acta Biomembr. 1858, 1339–1349 (2016).

    CAS 

    Google Scholar 

  • Yang, C.-H. et al. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci. Rep. 8, 14602 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McErlean, E. M. et al. Rational design and characterisation of an amphipathic cell penetrating peptide for non-viral gene delivery. Int. J. Pharm. 596, 120223 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Oikawa, K., Islam, M. M., Horii, Y., Yoshizumi, T. & Numata, K. Screening of a cell-penetrating peptide library in Escherichia coli: relationship between cell penetration efficiency and cytotoxicity. ACS Omega 3, 16489–16499 (2018).

    CAS 

    Google Scholar 

  • Splith, K. & Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. 40, 387–397 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Hilinski, G. J. et al. Stitched alpha-helical peptides via bis ring-closing metathesis. J. Am. Chem. Soc. 136, 12314–12322 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299, 371–374 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schiffer, M. & Edmundson, A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121–135 (1967).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wexler-Cohen, Y., Sackett, K. & Shai, Y. The role of the N-terminal heptad repeat of HIV-1 in the actual lipid mixing step as revealed by its substitution with distant coiled coils. Biochemistry 44, 5853–5861 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ciobanasu, C., Siebrasse, J. P. & Kubitscheck, U. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes. Biophys. J. 99, 153–162 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prevette, L. E., Benish, N. C., Schoenecker, A. R. & Braden, K. J. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density-and stereochemistry-dependent manner. Biophys. Chem. 207, 40–50 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Silverstein, S. C., Steinman, R. M. & Cohn, Z. A. Endocytosis. Annu. Rev. Biochem. 46, 669–722 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Illien, F. et al. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci. Rep. 6, 36938 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ladokhin, A. S., Jayasinghe, S. & White, S. H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother?. Anal. Biochem. 285, 235–245 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Wallbrecher, R. et al. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity. J. Control. Release 256, 68–78 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sekiya, Y., Sakashita, S., Shimizu, K., Usui, K. & Kawano, R. Channel current analysis estimates the pore-formation and the penetration of transmembrane peptides. Analyst 143, 3540–3543 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Takechi-Haraya, Y. & Saito, H. Current understanding of physicochemical mechanisms for cell membrane penetration of arginine-rich cell penetrating peptides: role of glycosaminoglycan interactions. Curr. Protein Pept. Sci. 19, 623–630 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Walrant, A., Cardon, S., Burlina, F. & Sagan, S. Membrane crossing and membranotropic activity of cell-penetrating peptides: dangerous liaisons?. Acc. Chem. Res. 50, 2968–2975 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ohgita, T. et al. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochim. Biophys. Acta Biomembr. 1862, 183403 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Reviakine, I. & Brisson, A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16, 1806–1815 (2000).

    CAS 

    Google Scholar 

  • Murrell, M. P. et al. Liposome adhesion generates traction stress. Nat. Phys. 10, 163–169 (2014).

    CAS 

    Google Scholar 

  • Takechi-Haraya, Y. et al. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir 32, 6074–6082 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, A. et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA 108, 16883–16888 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, N., Mishra, A., Lai, G. H. & Wong, G. C. L. Arginine-rich cell-penetrating peptides. FEBS Lett. 584, 1806–1813 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, M., Waring, A. J. & Hong, M. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J. Am. Chem. Soc. 129, 11438–11446 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Almeida, C., Maniti, O., Di Pisa, M., Swiecicki, J. M. & Ayala-Sanmartin, J. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: role in membrane translocation. PLoS ONE 14, e0210985 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahnsen, J. S., Franzyk, H., Sandberg-Schaal, A. & Nielsen, H. M. Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. Biochim. Biophys. Acta Biomembr. 1828, 223–232 (2013).

    CAS 

    Google Scholar 

  • Horváti, K. et al. Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup. Amino Acids 49, 1053–1067 (2017).

    PubMed 

    Google Scholar 

  • Kauffman, W. B., Fuselier, T., He, J. & Wimley, W. C. Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem. Sci. 40, 749–764 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Narayana, J. L. et al. Two distinct amphipathic peptide antibiotics with systemic efficacy. Proc. Natl. Acad. Sci. USA 117, 19446–19454 (2020).

    CAS 

    Google Scholar 

  • Scheller, A., Wiesner, B., Melzig, M., Bienert, M. & Oehlke, J. Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides. Eur. J. Biochem. 267, 6043–6050 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • He, S., Stone, T. A. & Deber, C. M. Uncoupling amphipathicity and hydrophobicity: role of charge clustering in membrane interactions of cationic antimicrobial peptides. Biochemistry 60, 2586–2592 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • El-Andaloussi, S., Järver, P., Johansson, H. J. & Langel, Ü. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochem. J. 407, 285–292 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jobin, M. L. et al. Biophysical insight on the membrane insertion of an arginine-rich cell-penetrating peptide. Int. J. Mol. Sci. 20, 4441 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Alvares, D. S., Wilke, N. & Neto, J. R. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. Biochim. Biophys. Acta Biomembr. 1860, 737–748 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Strømland, Ø., Handegård, Ø. S., Govasli, M. L., Wen, H. & Halskau, Ø. Peptides derived from α-lactalbumin membrane binding helices oligomerize in presence of lipids and disrupt bilayers. Biochim. Biophys. Acta Biomembr. 1859, 1029–1039 (2017).

    PubMed 

    Google Scholar 

  • Snider, C., Jayasinghe, S., Hristova, K. & White, S. H. MPEx: a tool for exploring membrane proteins. Protein Sci. 18, 2624–2628 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saito, H. et al. Alpha-helix formation is required for high affinity binding of human apolipoprotein A-I to lipids. J. Biol. Chem. 279, 20974–20981 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Takechi-Haraya, Y., Goda, Y. & Sakai-Kato, K. Atomic force microscopy study on the stiffness of nanosized liposomes containing charged lipids. Langmuir 34, 7805–7812 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M. & Baldwin, R. L. Parameters of helix–coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers 31, 1463–1470 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Saigo, N., Izumi, K. & Kawano, R. Electrophysiological analysis of antimicrobial peptides in diverse species. ACS Omega 4, 13124–13130 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takechi-Haraya, Y., Goda, Y., Izutsu, K. & Sakai-Kato, K. Improved atomic force microscopy stiffness measurements of nanoscale liposomes by cantilever tip shape evaluation. Anal. Chem. 91, 10432–10440 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

  • Vorselen, D., MacKintosh, F. C., Roos, W. H. & Wuite, G. J. L. Competition between bending and internal pressure governs the mechanics of fluid nanovesicles. ACS Nano 11, 2628–2636 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Delorme, N. & Fery, A. Direct method to study membrane rigidity of small vesicles based on atomic force microscope force spectroscopy. Phys. Rev. E 74, 030901 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Source link