Preloader

Drug delivery systems for RNA therapeutics

  • 1.

    Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug. Discov. 1, 727–730 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    High, K. A. & Roncarolo, M. G. Gene therapy. N. Engl. J. Med. 381, 455–464 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Pasi, K. J. et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 382, 29–40 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Kohn, D. B. et al. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N. Engl. J. Med. 384, 2002–2013 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Aronson, S. J. et al. Prevalence and relevance of pre-existing anti-adeno-associated virus immunity in the context of gene therapy for Crigler–Najjar syndrome. Hum. Gene Ther. 30, 1297–1305 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Bryson, T. E., Anglin, C. M., Bridges, P. H. & Cottle, R. N. Nuclease-mediated gene therapies for inherited metabolic diseases of the liver. Yale J. Biol. Med. 90, 553–566 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Nguyen, G. N. et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 39, 47–55 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Chandler, M., Panigaj, M., Rolband, L. A. & Afonin, K. A. Challenges to optimizing RNA nanostructures for large scale production and controlled therapeutic properties. Nanomedicine 15, 1331–1340 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Parums, D. V. Editorial: first full regulatory approval of a COVID-19 vaccine, the BNT162b2 Pfizer-BioNTech vaccine, and the real-world implications for Public Health Policy. Med. Sci. Monit. 27, e934625 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 

    Google Scholar 

  • 23.

    Buck, J., Grossen, P., Cullis, P. R., Huwyler, J. & Witzigmann, D. Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery. ACS Nano 13, 3754–3782 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    PubMed 

    Google Scholar 

  • 25.

    Watts, J. K. & Corey, D. R. Silencing disease genes in the laboratory and the clinic. J. Pathol. 226, 365–379 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Kosmas, C. E. et al. Inclisiran for the treatment of cardiovascular disease: a short review on the emerging data and therapeutic potential. Ther. Clin. Risk Manag. 16, 1031–1037 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Chen, F., Alphonse, M. & Liu, Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1609 (2020).

    PubMed 

    Google Scholar 

  • 28.

    Hanna, J., Hossain, G. S. & Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet. 10, 478 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Hong, D. S. et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    van der Ree, M. H. et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 43, 102–113 (2016).

    PubMed 

    Google Scholar 

  • 31.

    van der Ree, M. H. et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389, 709–717 (2017).

    PubMed 

    Google Scholar 

  • 32.

    Regulus announces pipeline updates and advancements. Regulus http://ir.regulusrx.com/news-releases/news-release-details/regulus-announces-pipeline-updates-and-advancements (2017).

  • 33.

    Wilson, R. C. & Doudna, J. A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Alnylam announces U.S. Food and Drug Administration acceptance of new drug application for investigational vutrisiran for the treatment of the polyneuropathy of hereditary ATTR amyloidosis. Alnylam https://investors.alnylam.com/press-release?id=25811 (2021).

  • 36.

    HELIOS-A: 9-month results from the phase 3 study of vutrisiran in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Alnylam https://www.alnylam.com/wp-content/uploads/2021/04/Adams_HELIOS-A-9-Month-Results.pdf (2021).

  • 37.

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Adachi, H., Hengesbach, M., Yu, Y. T. & Morais, P. From antisense RNA to RNA modification: therapeutic potential of RNA-based technologies. Biomedicines 9, 550 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Humphreys, S. C. et al. Emerging siRNA design principles and consequences for biotransformation and disposition in drug development. J. Med. Chem. 63, 6407–6422 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Evers, M. M., Toonen, L. J. & van Roon-Mom, W. M. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 87, 90–103 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Santos, R. D. et al. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 phase III trials. Arterioscler. Thromb. Vasc. Biol. 35, 689–699 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 22–31 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Lim, K. R., Maruyama, R. & Yokota, T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Devel Ther. 11, 533–545 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Frank, D. E. et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 94, e2270–e2282 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Crooke, S. T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 27, 70–77 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Lim, K. H. et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 11, 3501 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Kilanowska, A. & Studzińska, S. In vivo and in vitro studies of antisense oligonucleotides — a review. RSC Adv. 10, 34501–34516 (2020).

    CAS 

    Google Scholar 

  • 49.

    Bennett, C. F., Baker, B. F., Pham, N., Swayze, E. & Geary, R. S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57, 81–105 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Burdick, A. D. et al. Sequence motifs associated with hepatotoxicity of locked nucleic acid — modified antisense oligonucleotides. Nucleic Acids Res. 42, 4882–4891 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Yamamoto, T. et al. Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides. Pharmaceutics 13, 817 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Miller, C. M. et al. Stabilin-1 and stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res. 44, 2782–2794 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Aquino-Jarquin, G. Novel engineered programmable systems for ADAR-mediated RNA editing. Mol. Ther. Nucleic Acids 19, 1065–1072 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Da Silva Sanchez, A., Paunovska, K., Cristian, A. & Dahlman, J. E. Treating cystic fibrosis with mRNA and CRISPR. Hum. Gene Ther. 31, 940–955 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Thompson, M. G. et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers — eight U.S. locations, December 2020-March 2021. MMWR 70, 495–500 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Dobrowolski, C., Paunovska, K., Hatit, M. Z. C., Lokugamage, M. P. & Dahlman, J. E. Therapeutic RNA delivery for COVID and other diseases. Adv. Health. Mater. 10, e2002022 (2021).

    Google Scholar 

  • 63.

    Translate Bio announces results from second interim data analysis from ongoing phase 1/2 clinical trial of MRT5005 in patients with cystic fibrosis (CF). Translate Bio https://investors.translate.bio/news-releases/news-release-details/translate-bio-announces-results-second-interim-data-analysis (2021).

  • 64.

    Translate Bio announces pipeline program update. Translate Bio https://investors.translate.bio/news-releases/news-release-details/translate-bio-announces-pipeline-program-update (2021).

  • 65.

    Arcturus Therapeutics announces first quarter 2021 company overview and financial results and provides new clinical data. Arcturus Therapeutics https://ir.arcturusrx.com/news-releases/news-release-details/arcturus-therapeutics-announces-first-quarter-2021-company (2021).

  • 66.

    Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Luisi, K. et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Sci. Adv. 6, eaba5068 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Leal, L. et al. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS 32, 2533–2545 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Conry, R. M. et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Jimeno, A. et al. Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies. Cancer Res. 80, CT032 (2020).

    Google Scholar 

  • 75.

    Zhang, H. X., Zhang, Y. & Yin, H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 27, 735–746 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Controlled Rel. 217, 345–351 (2015).

    CAS 

    Google Scholar 

  • 77.

    Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Allergan and Editas Medicine announce dosing of first patient in landmark phase 1/2 clinical trial of CRISPR medicine AGN-151587 (EDIT-101) for the treatment of LCA10. Editas Medicine https://ir.editasmedicine.com/news-releases/news-release-details/allergan-and-editas-medicine-announce-dosing-first-patient (2020).

  • 79.

    Hanlon, K. S. et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 10, 4439 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 81.

    Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Thakore, P. I., Black, J. B., Hilton, I. B. & Gersbach, C. A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e2517 (2021).

    PubMed 

    Google Scholar 

  • 86.

    Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Saito, M. et al. Dual modes of CRISPR-associated transposon homing. Cell 9, 2441–2453.e18 (2021).

    Google Scholar 

  • 90.

    Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Özcan, A. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720–725 (2021).

    PubMed 

    Google Scholar 

  • 93.

    Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Abbott, T. R. et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 181, 865–876.e812 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Blanchard, E. L. et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat. Biotechnol. 39, 717–726 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Edn Engl. 56, 1059–1063 (2017).

    CAS 

    Google Scholar 

  • 98.

    Jiang, C. et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440–443 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Rosenblum, D. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Lee, B. et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2, 497–507 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Pausch, P. et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01009-z (2021).

    Article 
    PubMed 

    Google Scholar 

  • 111.

    Xu, X. et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345.e4 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 112.

    Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01030-2 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 113.

    Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of lipid bilayers and vesicles. Biochim. Biophys. Acta 470, 185–201 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 115.

    Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 116.

    Herrera, M., Kim, J., Eygeris, Y., Jozic, A. & Sahay, G. Illuminating endosomal escape of polymorphic lipid nanoparticles that boost mRNA delivery. Biomater. Sci. 9, 4289–4300 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 117.

    Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 118.

    Altınoglu, S., Wang, M. & Xu, Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine 10, 643–657 (2015).

    PubMed 

    Google Scholar 

  • 119.

    Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 120.

    Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 122.

    Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Edn Engl. 51, 8529–8533 (2012).

    CAS 

    Google Scholar 

  • 124.

    Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Google Scholar 

  • 125.

    Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdtomato reporter mouse. molecular therapy. Nucleic Acids 10, 55–63 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 127.

    Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague–Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 128.

    ModernaTx. Compounds and compositions for intracellular delivery of therapeutic agents. US patent US20170210697A1 (2021).

  • 129.

    Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 130.

    Beam Therapeutics announces updated preclinical data highlighting optimized LNP delivery approaches for in vivo base editing to the liver and other tissues. Beam Therapeutics https://investors.beamtx.com/news-releases/news-release-details/beam-therapeutics-announces-updated-preclinical-data (2021).

  • 131.

    Kulkarni, J. A., Cullis, P. R. & van der Meel, R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid. Ther. 28, 146–157 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 132.

    Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 133.

    Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nano 9, 648–655 (2014).

    CAS 

    Google Scholar 

  • 134.

    Khan, O. F. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    PubMed 

    Google Scholar 

  • 138.

    Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic acids 2, e139 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 139.

    Ryals, R. C. et al. The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 15, e0241006 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 140.

    Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Eygeris, Y., Patel, S., Jozic, A. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 142.

    Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed 

    Google Scholar 

  • 143.

    Intellia Therapeutics presents preclinical proof of concept for CRISPR-based in vivo editing of bone marrow at Keystone eSymposium. Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-presents-preclinical-proof-concept-crispr (2021).

  • 144.

    Rai, R., Alwani, S. & Badea, I. Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polymers 11, 745 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 145.

    Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 146.

    Crucho, C. I. C. & Barros, M. T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 80, 771–784 (2017).

    CAS 

    Google Scholar 

  • 147.

    Zhong, H., Chan, G., Hu, Y., Hu, H. & Ouyang, D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 10, 263 (2018).

    CAS 
    PubMed Central 

    Google Scholar 

  • 148.

    Xiao, B. et al. Combination therapy for ulcerative colitis: orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics 6, 2250–2266 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Harada-Shiba, M. et al. Polyion complex micelles as vectors in gene therapy — pharmacokinetics and in vivo gene transfer. Gene Ther. 9, 407–414 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 150.

    Ewe, A. et al. Optimized polyethylenimine (PEI)-based nanoparticles for siRNA delivery, analyzed in vitro and in an ex vivo tumor tissue slice culture model. Drug Deliv. Transl. Res. 7, 206–216 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 151.

    Gao, X. et al. The association of autophagy with polyethylenimine-induced cytotoxicity in nephritic and hepatic cell lines. Biomaterials 32, 8613–8625 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 152.

    Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 153.

    Ke, X. et al. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells. ACS Appl. Mater. Interf. 12, 35835–35844 (2020).

    CAS 

    Google Scholar 

  • 154.

    Tan, L. et al. Optimization of an mRNA vaccine assisted with cyclodextrin–polyethyleneimine conjugates. Drug. Deliv. Transl. Res. 10, 678–689 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 155.

    Xiang, J. J. et al. IONP-PLL: a novel non-viral vector for efficient gene delivery. J. Gene Med. 5, 803–817 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 156.

    Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 157.

    Choi, J. et al. Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. Nanomedicine 23, 102115 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 158.

    Akinc, A., Lynn, D. M., Anderson, D. G. & Langer, R. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc. 125, 5316–5323 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 159.

    Green, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 160.

    Vandenbroucke, R. E. et al. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(beta-amino esters). J. Gene Med. 10, 783–794 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 161.

    Anderson, D. G., Lynn, D. M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Edn Engl. 42, 3153–3158 (2003).

    CAS 

    Google Scholar 

  • 162.

    Anderson, D. G., Akinc, A., Hossain, N. & Langer, R. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol. Ther. 11, 426–434 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 163.

    Mastorakos, P. et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc. Natl Acad. Sci. USA 112, 8720–8725 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Su, X., Fricke, J., Kavanagh, D. G. & Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm. 8, 774–787 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 165.

    Kozielski, K. L. et al. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials 209, 79–87 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    Eltoukhy, A. A., Chen, D., Alabi, C. A., Langer, R. & Anderson, D. G. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv. Mater. 25, 1487–1493 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 167.

    Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Edn Engl. 55, 13808–13812 (2016).

    CAS 

    Google Scholar 

  • 168.

    Xu, L., Zhang, H. & Wu, Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem. Neurosci. 5, 2–13 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 169.

    Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 170.

    Khan, O. F. et al. Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew. Chem. Int. Edn Engl. 53, 14397–14401 (2014).

    CAS 

    Google Scholar 

  • 171.

    Bielinska, A. U., Kukowska-Latallo, J. F. & Baker, J. R. Jr The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta 1353, 180–190 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 172.

    Sonawane, N. D., Szoka, F. C. Jr & Verkman, A. S. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem. 278, 44826–44831 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 173.

    Yoo, J., Park, C., Yi, G., Lee, D. & Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11, 640 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 174.

    Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 175.

    Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 176.

    Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    PubMed 

    Google Scholar 

  • 177.

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 178.

    Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 179.

    Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 180.

    Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 181.

    Sago, C. D. et al. Modifying a commonly expressed endocytic receptor retargets nanoparticles in vivo. Nano Lett. 18, 7590–7600 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 182.

    Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control. Rel. 235, 236–244 (2016).

    CAS 

    Google Scholar 

  • 183.

    Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 184.

    Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 185.

    Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 186.

    Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 187.

    Agarwal, S. et al. Impact of serum proteins on the uptake and RNA interference activity of N-acetylgalactosamine-conjugated small interfering RNAs. Nucleic Acid Ther. 31, 309–315 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 188.

    Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 189.

    Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 190.

    Zanardi, T. A. et al. Safety, pharmacokinetic, and pharmacodynamic evaluation of a 2′-(2-methoxyethyl)-d-ribose antisense oligonucleotide-triantenarry N-acetyl-galactosamine conjugate that targets the human transmembrane protease serine 6. J. Pharmacol. Exp. Ther. 377, 51–63 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 191.

    Janas, M. M. et al. The nonclinical safety profile of GalNAc-conjugated RNAi therapeutics in subacute studies. Toxicol. Pathol. 46, 735–745 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 192.

    Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 47, 1082–1096 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 193.

    Osborn, M. F. et al. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res. 47, 1070–1081 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 194.

    Nagata, T. et al. Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–brain barrier and knock down genes in the rodent CNS. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00972-x (2021).

    Article 
    PubMed 

    Google Scholar 

  • 195.

    Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 196.

    Yoon, S., Wu, X., Armstrong, B., Habib, N. & Rossi, J. J. An RNA aptamer targeting the receptor tyrosine kinase PDGFRα induces anti-tumor effects through STAT3 and p53 in glioblastoma. Mol. Ther. Nucleic Acids 14, 131–141 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 197.

    Sugo, T. et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J. Controlled Rel. 237, 1–13 (2016).

    CAS 

    Google Scholar 

  • 198.

    Avidity corporate presentation. Avidity Biosciences https://aviditybiosciences.investorroom.com/events-and-presentations (2021).

  • 199.

    Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 200.

    Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 201.

    Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00928-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 202.

    Li, Q. et al. Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 203.

    Zhuang, X. et al. mRNA vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines 8, 123 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 204.

    Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 205.

    Paunovska, K., Loughrey, D., Sago, C. D., Langer, R. & Dahlman, J. E. Using large datasets to understand nanotechnology. Adv. Mater. 31, e1902798 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 206.

    Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 207.

    Yaari, Z. et al. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7, 13325 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 208.

    Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 209.

    Lokugamage, M. P., Sago, C. D., Gan, Z., Krupczak, B. R. & Dahlman, J. E. Constrained nanoparticles deliver siRNA and sgRNA to T cells in vivo without targeting ligands. Adv. Mater. 31, e1902251 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 210.

    Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, 1904905 (2019).

    Google Scholar 

  • 211.

    Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, eaba1028 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 212.

    Havel, P. J., Kievit, P., Comuzzie, A. G. & Bremer, A. A. Use and importance of nonhuman primates in metabolic disease research: current state of the field. ILAR J. 58, 251–268 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 213.

    Paunovska, K. et al. Increased PIP3 activity blocks nanoparticle mRNA delivery. Sci. Adv. 6, eaba5672 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 214.

    Li, R. et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat. Nanotechnol. 16, 830–839 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 215.

    Patel, S. et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 216.

    Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53, 51–65 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 217.

    Rampado, R., Crotti, S., Caliceti, P., Pucciarelli, S. & Agostini, M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front. Bioeng. Biotechnol. 8, 166 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 218.

    Delprato, A. et al. Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice. Genes Brain Behav. 14, 591–606 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 219.

    Harrill, A. H. et al. A mouse diversity panel approach reveals the potential for clinical kidney injury due to DB289 not predicted by classical rodent models. Toxicol. Sci. 130, 416–426 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 220.

    Church, R. J. et al. A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis. Toxicol. Sci. 140, 481–492 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 221.

    Leist, S. R. et al. Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice. BMC Genomics 17, 143 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 222.

    Jaxpheno2 project protocol: morphometric (organ weight) survey of 11 strains of mice (2006). Mouse Phenome Database at the Jackson Laboratory https://phenome.jax.org/projects/Jaxpheno2/protocol?method=organ+weights (2006).

  • 223.

    Sugimoto, K. et al. Background data on organ weights and histopathological lesions in Cej:CD(SD)IGS rats for 4-, 13- and 26-weeks repeated-dose toxicity studies. Biological reference data on CD(SD)IGS rats. In IGS Databook 2000 79–87 (Charles River Laboratory, 2000).

  • 224.

    Durbin, P. W., Jeung, N., Williams, M. H., Kullgren, B. & Parrott, M. W. Weights of bones and tissues at maturity and growth of the skeleton of rhesus (Macaca mullata and cynomolgus (Macaca fascicularis) monkeys. escholarship https://escholarship.org/content/qt6kw7682s/qt6kw7682s.pdf (1996).

  • 225.

    Molina, D. K. & DiMaio, V. J. Normal organ weights in men. Part II — the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 33, 368–372 (2012).

    PubMed 

    Google Scholar 

  • 226.

    Molina, D. K. & DiMaio, V. J. Normal organ weights in women. Part II — the brain, lungs, liver, spleen, and kidneys. Am. J. Forensic Med. Pathol. 36, 182–187 (2015).

    PubMed 

    Google Scholar 

  • 227.

    Molina, D. K. & DiMaio, V. J. Normal organ weights in women. Part I — the heart. Am. J. Forensic Med. Pathol. 36, 176–181 (2015).

    PubMed 

    Google Scholar 

  • 228.

    Molina, D. K. & DiMaio, V. J. Normal organ weights in men. Part I — the heart. Am. J. Forensic Med. Pathol. 33, 362–367 (2012).

    PubMed 

    Google Scholar 

  • 229.

    Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01030-y (2021).

    Article 

    Google Scholar 

  • 230.

    Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2019).

    PubMed Central 

    Google Scholar 

  • 231.

    Zhang, X. et al. Patisiran pharmacokinetics, pharmacodynamics, and exposure-response analyses in the phase 3 APOLLO trial in patients with hereditary transthyretin-mediated (hATTR) amyloidosis. J. Clin. Pharmacol. 60, 37–49 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 232.

    Center for Drug Evaluation and Research application number: 210922Orig1s000. FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000MultiR.pdf (2018).

  • 233.

    Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 234.

    Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 235.

    Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 236.

    Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 237.

    Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 238.

    Zhao, P. et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater. 5, 358–363 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 239.

    Gerhardt, A. et al. A thermostable, flexible RNA vaccine delivery platform for pandemic response. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.429283 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 240.

    Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 241.

    Machin, N. & Ragni, M. V. An investigational RNAi therapeutic targeting antithrombin for the treatment of hemophilia A and B. J. Blood Med. 9, 135–140 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 242.

    Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine–small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther. 109, 372–382 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 243.

    Wang, Y., Yu, R. Z., Henry, S. & Geary, R. S. Pharmacokinetics and clinical pharmacology considerations of GalNAc(3)-conjugated antisense oligonucleotides. Expert Opin. Drug Metab. Toxicol. 15, 475–485 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 244.

    Ferguson, C. M., Echeverria, D., Hassler, M., Ly, S. & Khvorova, A. Cell type impacts accessibility of mRNA to silencing by RNA interference. Mol. Ther. Nucleic Acids 21, 384–393 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 245.

    Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 246.

    Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 247.

    Dhuri, K. et al. Antisense oligonucleotides: an emerging area in drug discovery and development. J. Clin. Med. 9, 2004 (2020)

    CAS 
    PubMed Central 

    Google Scholar 

  • 248.

    Hung, G. et al. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Nucleic Acid. Ther. 23, 369–378 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 249.

    CureVac provides update on phase 2b/3 trial of first-generation COVID-19 vaccine candidate, CVnCoV. CureVac https://www.curevac.com/en/2021/06/16/curevac-provides-update-on-phase-2b-3-trial-of-first-generation-covid-19-vaccine-candidate-cvncov/ (2021).

  • 250.

    McKenzie, L. K., El-Khoury, R., Thorpe, J. D., Damha, M. J. & Hollenstein, M. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50, 5126–5164 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 251.

    Orlandini von Niessen, A. G. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 27, 824–836 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 252.

    Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28, 285–296 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 253.

    Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128ra139 (2012).

    Google Scholar 

  • 254.

    Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 255.

    Kojima, N., Turner, I. & Klausner, J. D. The Covid-19 vaccine-development multiverse. N. Engl. J. Med. 384, 681–682 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 256.

    Levine-Tiefenbrun, M. et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 27, 790–792 (2021).

    CAS 

    Google Scholar 

  • 257.

    Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med. 384, 1412–1423 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 258.

    Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 259.

    Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215, 1571–1588 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 260.

    Laczkó, D. et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53, 724–732.e727 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 261.

    Wu, K. et al. Serum neutralizing activity elicited by mRNA-1273 vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2102179 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 262.

    Callaway, E. & Ledford, H. How to redesign COVID vaccines so they protect against variants. Nature 590, 15–16 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 263.

    Hacisuleyman, E. et al. Vaccine breakthrough infections with SARS-CoV-2 variants. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2105000 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 264.

    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link