Preloader

Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy

  • Siliciano, R. F. & Greene, W. C. HIV latency. Cold Spring Harb. Perspect. Med. 1, a007096 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Maartens, G., Celum, C. & Lewin, S. R. HIV infection: epidemiology, pathogenesis, treatment and prevention. Lancet 384, 258–271 (2014).

    PubMed 

    Google Scholar 

  • Deeks, S. G. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Buell, K. G. et al. Lifelong antiretroviral therapy or HIV cure: the benefits for the individual patient. AIDS Care Psychol. Socio Med. Asp. AIDS/HIV 28, 242–246 (2016).

    Google Scholar 

  • Dieffenbach, C. W. & Fauci, A. S. Thirty years of HIV and AIDS: future challenges and opportunities. Ann. Intern. Med. 154, 766–771 (2011).

    PubMed 

    Google Scholar 

  • Bui, J. K. et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog. 13, e1006283 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Symons, J., Cameron, P. U. & Lewin, S. R. HIV integration sites and implications for maintenance of the reservoir. Curr. Opin. HIV AIDS 13, 152–159 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiegand, A. et al. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proc. Natl Acad. Sci. USA 114, E3659–E3668 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, T. A. et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, T. A. et al. An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J. Virol. 87, 1770–1778 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruner, K. M. et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 566, 120–125 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruner, K. M. et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22, 1043–1049 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Einkauf, K. B. et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J. Clin. Invest. 129, 988–998 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patro, S. C. et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc. Natl Acad. Sci. USA 116, 25891–25899 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hiener, B. et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep. 21, 813–822 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gall, A. et al. Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J. Clin. Microbiol. 50, 3838–3844 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, I. C. & Abate, A. R. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab Chip 17, 2032–2045 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. W., Tran, T. M. & Abate, A. R. PCR-activated cell sorting for cultivation-free enrichment and sequencing of rare microbes. PLoS ONE 10, e0113549 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Massanella, M. & Richman, D. D. Measuring the latent reservoir in vivo. J. Clin. Invest. 126, 464–472 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. L., Rodrigo, A. G., Shankarappa, R. & Learn, G. H. HIV quasispecies and resampling. Science 273, 415–416 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, J. K., Bhattacharyya, D., Lassen, K. G., Ruelas, D. & Greene, W. C. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLoS ONE 8, e77749 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenasi, T., Contreras, X. & Peterlin, B. M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4, 123–133 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mullins, J. I. & Frenkel, L. M. Clonal expansion of human immunodeficiency virus-infected cells and human immunodeficiency virus persistence during antiretroviral therapy. J. Infect. Dis. 215, S119–S127 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorenzo-Redondo, R. et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530, 51–56 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez, L. et al. Conflicting evidence for HIV enrichment in CD32+ CD4 T cells. Nature 561, E9–E16 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rousseau, C. M. et al. Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. J. Virol. Methods 136, 118–125 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bin Hamid, F., Kim, J. & Shin, C. G. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res. Ther. 14, 9 (2017).

    Google Scholar 

  • Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. X. Single-cell transcriptional landscapes reveal HIV-1-driven aberrant host gene transcription as a potential therapeutic target. Sci. Transl. Med. 12, eaaz0802 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baxter, A. E. et al. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 20, 368–380 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, H. S. et al. Whole-genome sequencing of a single viral species from a highly heterogeneous sample. Angew. Chem. Int. Ed. 54, 13985–13988 (2015).

    CAS 

    Google Scholar 

  • Zanini, F., Brodin, J., Albert, J. & Neher, R. A. Error rates, PCR recombination, and sampling depth in HIV-1 whole genome deep sequencing. Virus Res. 239, 106–114 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Di Giallonardo, F. et al. Next-generation sequencing of HIV-1 RNA genomes: determination of error rates and minimizing artificial recombination. PLoS ONE 8, e74249 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, W. J. et al. DIVEIN: a web server to analyze phylogenies, sequence divergence, diversity and informative sites. Biotechniques 48, 405–408 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keele, B. F. et al. Identification and characterisation of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. Z. et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat. Commun. 6, 6822 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Source link