Preloader

Dntt expression reveals developmental hierarchy and lineage specification of hematopoietic progenitors

  • Sankaran, V. G. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839–1842 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eaves, C. J. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125, 2605–2613 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Ogawa, M. et al. B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J. 7, 1337–1343 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA 98, 14541–14546 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS 

    Google Scholar 

  • Yang, L. et al. Identification of LinSca1+kit+CD34+Flt3 short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105, 2717–2723 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).

    CAS 

    Google Scholar 

  • Cabezas-Wallscheid, N. et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13, 102–116 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ooi, A. G. et al. The adhesion molecule esam1 is a novel hematopoietic stem cell marker. Stem Cells 27, 653–661 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Pietras, E. M. et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17, 35–46 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, N. K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Yokota, T. et al. The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood 113, 2914–2923 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, S. Y., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mansson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    PubMed 

    Google Scholar 

  • Herman, J. S., Sagar & Grun, D. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15, 379–386 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gilfillan, S., Dierich, A., Lemeur, M., Benoist, C. & Mathis, D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261, 1175–1178 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Alberti-Servera, L. et al. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors. EMBO J. 36, 3619–3633 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balciunaite, G., Ceredig, R., Massa, S. & Rolink, A. G. A B220+CD117+CD19 hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur. J. Immunol. 35, 2019–2030 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Klein, F. et al. Accumulation of multipotent hematopoietic progenitors in peripheral lymphoid organs of mice over-expressing interleukin-7 and Flt3-ligand. Front Immunol. 9, 2258 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dress, R. J. et al. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20, 852–864 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Rodrigues, P. F. et al. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19, 711–722 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melania Barile, K. B. et al. Hematopoietic stem cells self-renew symmetrically or gradually proceed to differentiation. Preprint at CellPress https://doi.org/10.2139/ssrn.3787896 (2021).

  • Gazit, R. et al. Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells. Stem Cell Rep. 1, 266–280 (2013).

    CAS 

    Google Scholar 

  • Heng, T. S. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Mitjavila-Garcia, M. T. et al. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129, 2003–2013 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishibashi, T. et al. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias. Exp. Hematol. 44, 269–281 e261 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Sudo, T. et al. The endothelial antigen ESAM monitors hematopoietic stem cell status between quiescence and self-renewal. J. Immunol. 189, 200–210 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Sommerkamp, P. et al. Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells. Blood 137, 3218–3224 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyer, S. W., Schroeder, A. V., Smith-Berdan, S. & Forsberg, E. C. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9, 64–73 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buza-Vidas, N. et al. FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood 118, 1544–1548 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Drexler, H. G., Sperling, C. & Ludwig, W. D. Terminal deoxynucleotidyl transferase (TdT) expression in acute myeloid leukemia. Leukemia 7, 1142–1150 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Cuneo, A. et al. Clinical review on features and cytogenetic patterns in adult acute myeloid leukemia with lymphoid markers. Leuk. Lymphoma 9, 285–291 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Campagnari, F., Bombardieri, E., de Braud, F., Baldini, L. & Maiolo, A. T. Terminal deoxynucleotidyl transferase, TdT, as a marker for leukemia and lymphoma cells. Int. J. Biol. Markers 2, 31–42 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Trichas, G., Begbie, J. & Srinivas, S. Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol. 6, 40 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobi, A. M. et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 121–122, 16–28 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haueter, S. et al. Genetic vasectomy-overexpression of Prm1-EGFP fusion protein in elongating spermatids causes dominant male sterility in mice. Genesis 48, 151–160 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, F. et al. The transcription factor Duxbl mediates elimination of pre-T cells that fail beta-selection. J. Exp. Med. 216, 638–655 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • von Muenchow, L. et al. Permissive roles of cytokines interleukin-7 and Flt3 ligand in mouse B-cell lineage commitment. Proc. Natl Acad. Sci. USA 113, E8122–E8130 (2016).

    Google Scholar 

  • Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat. Commun. 9, 2667 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).

    PubMed 

    Google Scholar 

  • McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Murtagh, F. L. P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classification 31, 274–295 (2014).

    Google Scholar 

  • Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54–61 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshida, H. et al. The cis-regulatory atlas of the mouse immune system. Cell 176, 897–912.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, F. et al. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat. Cell Biol. 22, 630–639 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

  • Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link