Preloader

Discovery of actinomycin L, a new member of the actinomycin family of antibiotics

  • Wright, G. D. Solving the antibiotic crisis. ACS Infect. Dis. 1, 80–84 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barka, E. A. et al. Taxonomy, physiology, and natural products of the Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

    PubMed 

    Google Scholar 

  • Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1–26 (2005).

    Google Scholar 

  • Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Cruz-Morales, P. et al. The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol. Evol. 5, 1165–1175 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).

    PubMed 

    Google Scholar 

  • Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • van Bergeijk, D. A., Terlouw, B. R., Medema, M. H. & van Wezel, G. P. Ecology and genomics of Actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).

    PubMed 

    Google Scholar 

  • Urem, M., Swiatek-Polatynska, M. A., Rigali, S. & van Wezel, G. P. Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Mol. Microbiol. 102, 183–195 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • van der Heul, H. U., Bilyk, B. L., McDowall, K. J., Seipke, R. F. & van Wezel, G. P. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35, 575–604 (2018).

    PubMed 

    Google Scholar 

  • Sanchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot. (Tokyo) 63, 442–459 (2010).

    CAS 

    Google Scholar 

  • Bode, H. B., Bethe, B., Hofs, R. & Zeeck, A. Big effects from small changes possible ways to explore nature’s chemical diversity. ChemBioChem 3, 619–627 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Romano, S., Jackson, S. A., Patry, S. & Dobson, A. D. W. Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Mar. Drugs 16, 244 (2018).

    PubMed Central 

    Google Scholar 

  • Yoon, V. & Nodwell, J. R. Activating secondary metabolism with stress and chemicals. J. Ind. Microbiol. Biotechnol. 41, 415–424 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, H., Sandiford, S. K. & van Wezel, G. P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol. 41, 371–386 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Rigali, S. et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demarque, D. P. et al. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci. Rep. 10, 1051 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C., Choi, Y. H. & van Wezel, G. P. Metabolic profiling as a tool for prioritizing antimicrobial compounds. J. Ind. Microbiol. Biotechnol. 43, 299–312 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Gaudencio, S. P. & Pereira, F. Dereplication: Racing to speed up the natural products discovery process. Nat. Prod. Rep. 32, 779–810 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, D. D. et al. MS/MS networking guided analysis of molecule and gene cluster families. Proc. Natl. Acad. Sci. U. S. A. 110, E2611-2620 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waksman, S. A. & Woodruff, H. B. Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proc. Soc. Exp. Biol. Med. 45, 609–614 (1940).

    CAS 

    Google Scholar 

  • Katz, E. Actinomycin. (eds. D. Gottlieb & P.D. Shaw) 276–341 (Springer, 1967).

  • Crnovcic, I. et al. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv. Appl. Bioinform. Chem. 2017, 29–46 (2017).

    Google Scholar 

  • Crnovčić, I., Semsary, S., Vater, J. & Keller, U. Biosynthetic rivalry of o-aminophenol-carboxylic acids initiates production of hemi-actinomycins in Streptomyces antibioticus. RSC Adv. 4, 5065–5074 (2014).

    ADS 

    Google Scholar 

  • Zhu, H. et al. Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology 160, 1714–1725 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Machushynets, N. V., Wu, C., Elsayed, S. S., Hankemeier, T. & van Wezel, G. P. Discovery of novel glycerolated quinazolinones from Streptomyces sp. MBT27. J. Ind. Microbiol. Biotechnol. 46, 483–492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: From raw spectra to biological insights. Metabolites 9, 57 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Laatsch, H. Antibase 2012, the natural compound identifier. (Wiley-VCH Verlag GmbH & Co., 2012).

  • Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094. Sci. Rep. 7, 3591 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semsary, S. et al. Ketonization of proline residues in the peptide chains of actinomycins by a 4-oxoproline synthase. ChemBioChem 19, 706–715 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, M. et al. A systems approach using OSMAC, Log P and NMR fingerprinting: An approach to novelty. Synth. Syst. Biotechnol. 2, 276–286 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keller, U. Acyl pentapeptide lactone synthesis in actinomycin-producing streptomycetes by feeding with structural analogs of 4-methyl-3-hydroxyanthranilic acid. J. Biol. Chem. 259, 8226–8231 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Blin, K. et al. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, G. H. Actinomycin synthesis in Streptomyces antibioticus: Enzymatic conversion of 3-hydroxyanthranilic acid to 4-methyl-3-hydroxyanthranilic acid. J. Bacteriol. 169, 5575–5578 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfennig, F., Schauwecker, F. & Keller, U. Molecular characterization of the genes of actinomycin synthetase I and of a 4-methyl-3-hydroxyanthranilic acid carrier protein involved in the assembly of the acylpeptide chain of actinomycin in Streptomyces. J. Biol. Chem. 274, 12508–12516 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn. (Wiley, 2009).

    Google Scholar 

  • Shaaban, K. A. et al. Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp. DGC1. J. Antibiot. (Tokyo) 65, 615–622 (2012).

    CAS 
    PubMed Central 

    Google Scholar 

  • Biabani, M. A. et al. Anthranilamides: new antimicroalgal active substances from a marine Streptomyces sp. J. Antibiot. (Tokyo) 51, 333–340 (1998).

    CAS 

    Google Scholar 

  • Ham, Y. & Kim, T.-J. Anthranilamide from Streptomyces spp. inhibited Xanthomonas oryzae biofilm formation without affecting cell growth. Appl. Biol. Chem. 61, 673–680 (2018).

    CAS 

    Google Scholar 

  • Kolter, R. & van Wezel, G. P. Goodbye to brute force in antibiotic discovery?. Nat. Microbiol. 1, 15020 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Katz, E., Pienta, P. & Sivak, A. The role of nutrition in the synthesis of actinomycin. Appl. Microbiol. 6, 236–241 (1957).

    Google Scholar 

  • Haque, S. F., Sen, S. K. & Pal, S. C. Nutrient optimization for production of broad spectrum antibiotic by Streptomyces antibioticus SR15.4. Acta Microbiol. Immunol. Hung. 42, 155–162 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Theobald, U., Schimana, J. & Fiedler, H. Microbial growth and production kinetics of Streptomyces antibioticus Tü 6040. Antonie Van Leeuwenhoek 78, 307–313 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Dalili, M. & Chau, P. C. Production of actinomycin D with immobilized Streptomyces parvullus under nitrogen and carbon starvation conditions. Biotechnol. Lett. 10, 331–336 (1988).

    CAS 

    Google Scholar 

  • Williams, W. K. & Katz, E. Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus. Antimicrob. Agents Chemother. 11, 281 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, C. et al. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture. Angew. Chem. Int. Ed. Engl. 58, 2809–2814 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gomez-Escribano, J. P. et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 3, 2716–2720 (2012).

    CAS 

    Google Scholar 

  • Wu, C., Ichinose, K., Choi, Y. H. & van Wezel, G. P. Aromatic polyketide GTRI-02 is a previously unidentified product of the act gene cluster in Streptomyces coelicolor A3(2). ChemBioChem 18, 1428–1434 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Elsayed, S. S. et al. Atypical spirotetronate polyketides identified in the underexplored genus Streptacidiphilus. J. Org. Chem. 85, 10648–10657 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, 2000).

    Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, L., Pevzner, P. A. Assembly of long error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540–546. https://doi.org/10.1038/s41587-019-0072-8 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).

    CAS 

    Google Scholar 

  • Macrae, C. F. et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Audoin, C. et al. Balibalosides, an original family of glucosylated sesterterpenes produced by the mediterranean sponge Oscarella balibaloi. Mar. Drugs 11, 1477–1489 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, X. et al. Functional and structural insights into a novel promiscuous ketoreductase of the lugdunomycin biosynthetic pathway. ACS Chem. Biol. 15, 2529–2538 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).

    Google Scholar 

  • Chong, J. et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link