Wright, G. D. Solving the antibiotic crisis. ACS Infect. Dis. 1, 80–84 (2015).
Google Scholar
Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).
Google Scholar
Barka, E. A. et al. Taxonomy, physiology, and natural products of the Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).
Google Scholar
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1–26 (2005).
Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
Google Scholar
Cruz-Morales, P. et al. The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol. Evol. 5, 1165–1175 (2013).
Google Scholar
Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).
Google Scholar
Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).
Google Scholar
van Bergeijk, D. A., Terlouw, B. R., Medema, M. H. & van Wezel, G. P. Ecology and genomics of Actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).
Google Scholar
Urem, M., Swiatek-Polatynska, M. A., Rigali, S. & van Wezel, G. P. Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Mol. Microbiol. 102, 183–195 (2016).
Google Scholar
van der Heul, H. U., Bilyk, B. L., McDowall, K. J., Seipke, R. F. & van Wezel, G. P. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35, 575–604 (2018).
Google Scholar
Sanchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot. (Tokyo) 63, 442–459 (2010).
Google Scholar
Bode, H. B., Bethe, B., Hofs, R. & Zeeck, A. Big effects from small changes possible ways to explore nature’s chemical diversity. ChemBioChem 3, 619–627 (2002).
Google Scholar
Romano, S., Jackson, S. A., Patry, S. & Dobson, A. D. W. Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Mar. Drugs 16, 244 (2018).
Google Scholar
Yoon, V. & Nodwell, J. R. Activating secondary metabolism with stress and chemicals. J. Ind. Microbiol. Biotechnol. 41, 415–424 (2014).
Google Scholar
Zhu, H., Sandiford, S. K. & van Wezel, G. P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol. 41, 371–386 (2014).
Google Scholar
Craney, A., Ozimok, C., Pimentel-Elardo, S. M., Capretta, A. & Nodwell, J. R. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012).
Google Scholar
Rigali, S. et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670–675 (2008).
Google Scholar
Demarque, D. P. et al. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci. Rep. 10, 1051 (2020).
Google Scholar
Wu, C., Choi, Y. H. & van Wezel, G. P. Metabolic profiling as a tool for prioritizing antimicrobial compounds. J. Ind. Microbiol. Biotechnol. 43, 299–312 (2016).
Google Scholar
Gaudencio, S. P. & Pereira, F. Dereplication: Racing to speed up the natural products discovery process. Nat. Prod. Rep. 32, 779–810 (2015).
Google Scholar
Nguyen, D. D. et al. MS/MS networking guided analysis of molecule and gene cluster families. Proc. Natl. Acad. Sci. U. S. A. 110, E2611-2620 (2013).
Google Scholar
Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).
Google Scholar
Waksman, S. A. & Woodruff, H. B. Bacteriostatic and bactericidal substances produced by a soil actinomyces. Proc. Soc. Exp. Biol. Med. 45, 609–614 (1940).
Google Scholar
Katz, E. Actinomycin. (eds. D. Gottlieb & P.D. Shaw) 276–341 (Springer, 1967).
Crnovcic, I. et al. Genetic interrelations in the actinomycin biosynthetic gene clusters of Streptomyces antibioticus IMRU 3720 and Streptomyces chrysomallus ATCC11523, producers of actinomycin X and actinomycin C. Adv. Appl. Bioinform. Chem. 2017, 29–46 (2017).
Crnovčić, I., Semsary, S., Vater, J. & Keller, U. Biosynthetic rivalry of o-aminophenol-carboxylic acids initiates production of hemi-actinomycins in Streptomyces antibioticus. RSC Adv. 4, 5065–5074 (2014).
Google Scholar
Zhu, H. et al. Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology 160, 1714–1725 (2014).
Google Scholar
Machushynets, N. V., Wu, C., Elsayed, S. S., Hankemeier, T. & van Wezel, G. P. Discovery of novel glycerolated quinazolinones from Streptomyces sp. MBT27. J. Ind. Microbiol. Biotechnol. 46, 483–492 (2019).
Google Scholar
Chong, J., Yamamoto, M. & Xia, J. MetaboAnalystR 2.0: From raw spectra to biological insights. Metabolites 9, 57 (2019).
Google Scholar
Laatsch, H. Antibase 2012, the natural compound identifier. (Wiley-VCH Verlag GmbH & Co., 2012).
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Google Scholar
Wang, Q. et al. Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094. Sci. Rep. 7, 3591 (2017).
Google Scholar
Semsary, S. et al. Ketonization of proline residues in the peptide chains of actinomycins by a 4-oxoproline synthase. ChemBioChem 19, 706–715 (2018).
Google Scholar
Liu, M. et al. A systems approach using OSMAC, Log P and NMR fingerprinting: An approach to novelty. Synth. Syst. Biotechnol. 2, 276–286 (2017).
Google Scholar
Keller, U. Acyl pentapeptide lactone synthesis in actinomycin-producing streptomycetes by feeding with structural analogs of 4-methyl-3-hydroxyanthranilic acid. J. Biol. Chem. 259, 8226–8231 (1984).
Google Scholar
Blin, K. et al. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).
Google Scholar
Jones, G. H. Actinomycin synthesis in Streptomyces antibioticus: Enzymatic conversion of 3-hydroxyanthranilic acid to 4-methyl-3-hydroxyanthranilic acid. J. Bacteriol. 169, 5575–5578 (1987).
Google Scholar
Pfennig, F., Schauwecker, F. & Keller, U. Molecular characterization of the genes of actinomycin synthetase I and of a 4-methyl-3-hydroxyanthranilic acid carrier protein involved in the assembly of the acylpeptide chain of actinomycin in Streptomyces. J. Biol. Chem. 274, 12508–12516 (1999).
Google Scholar
Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 3rd edn. (Wiley, 2009).
Shaaban, K. A. et al. Pyramidamycins A-D and 3-hydroxyquinoline-2-carboxamide; cytotoxic benzamides from Streptomyces sp. DGC1. J. Antibiot. (Tokyo) 65, 615–622 (2012).
Google Scholar
Biabani, M. A. et al. Anthranilamides: new antimicroalgal active substances from a marine Streptomyces sp. J. Antibiot. (Tokyo) 51, 333–340 (1998).
Google Scholar
Ham, Y. & Kim, T.-J. Anthranilamide from Streptomyces spp. inhibited Xanthomonas oryzae biofilm formation without affecting cell growth. Appl. Biol. Chem. 61, 673–680 (2018).
Google Scholar
Kolter, R. & van Wezel, G. P. Goodbye to brute force in antibiotic discovery?. Nat. Microbiol. 1, 15020 (2016).
Google Scholar
Katz, E., Pienta, P. & Sivak, A. The role of nutrition in the synthesis of actinomycin. Appl. Microbiol. 6, 236–241 (1957).
Haque, S. F., Sen, S. K. & Pal, S. C. Nutrient optimization for production of broad spectrum antibiotic by Streptomyces antibioticus SR15.4. Acta Microbiol. Immunol. Hung. 42, 155–162 (1995).
Google Scholar
Theobald, U., Schimana, J. & Fiedler, H. Microbial growth and production kinetics of Streptomyces antibioticus Tü 6040. Antonie Van Leeuwenhoek 78, 307–313 (2000).
Google Scholar
Dalili, M. & Chau, P. C. Production of actinomycin D with immobilized Streptomyces parvullus under nitrogen and carbon starvation conditions. Biotechnol. Lett. 10, 331–336 (1988).
Google Scholar
Williams, W. K. & Katz, E. Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus. Antimicrob. Agents Chemother. 11, 281 (1977).
Google Scholar
Nett, M., Ikeda, H. & Moore, B. S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362–1384 (2009).
Google Scholar
Wu, C. et al. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture. Angew. Chem. Int. Ed. Engl. 58, 2809–2814 (2019).
Google Scholar
Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).
Google Scholar
Gomez-Escribano, J. P. et al. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 3, 2716–2720 (2012).
Google Scholar
Wu, C., Ichinose, K., Choi, Y. H. & van Wezel, G. P. Aromatic polyketide GTRI-02 is a previously unidentified product of the act gene cluster in Streptomyces coelicolor A3(2). ChemBioChem 18, 1428–1434 (2017).
Google Scholar
Elsayed, S. S. et al. Atypical spirotetronate polyketides identified in the underexplored genus Streptacidiphilus. J. Org. Chem. 85, 10648–10657 (2020).
Google Scholar
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, 2000).
Kolmogorov, M., Yuan, J., Lin, L., Pevzner, P. A. Assembly of long error-prone reads using repeat graphs. Nat. Biotechnol. 37(5), 540–546. https://doi.org/10.1038/s41587-019-0072-8 (2019).
Google Scholar
Gilchrist, C. L. M. & Chooi, Y.-H. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).
Google Scholar
Macrae, C. F. et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 53, 226–235 (2020).
Google Scholar
Audoin, C. et al. Balibalosides, an original family of glucosylated sesterterpenes produced by the mediterranean sponge Oscarella balibaloi. Mar. Drugs 11, 1477–1489 (2013).
Google Scholar
Xiao, X. et al. Functional and structural insights into a novel promiscuous ketoreductase of the lugdunomycin biosynthetic pathway. ACS Chem. Biol. 15, 2529–2538 (2020).
Google Scholar
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
Google Scholar
Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
Chong, J. et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018).
Google Scholar

