Preloader

Direct targeting of amplified gene loci for proapoptotic anticancer therapy

  • 1.

    Chen, Y. et al. Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS ONE 9, e98293 (2014).

    Article 

    Google Scholar 

  • 2.

    Matsui, A., Ihara, T., Suda, H., Mikami, H. & Semba, K. Gene amplification: mechanisms and involvement in cancer. Biomol. Concepts 4, 567–582 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Santarius, T., Shipley, J., Brewer, D., Stratton, M. R. & Cooper, C. S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10, 59–64 (2010).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Ohshima, K. et al. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Sci. Rep. 7, 641 (2017).

    Article 

    Google Scholar 

  • 6.

    Moasser, M. M. & Krop, I. E. The evolving landscape of HER2 targeting in breast cancer. JAMA Oncol. 1, 1154–1161 (2015).

    Article 

    Google Scholar 

  • 7.

    Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Baselga, J., Albanell, J., Molina, M. A. & Arribas, J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol. 28, 4–11 (2001).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Wilks, S. T. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast 24, 548–555 (2015).

    Article 

    Google Scholar 

  • 11.

    Petty, R. D. et al. Gefitinib and EGFR gene copy number aberrations in esophageal cancer. J. Clin. Oncol. 35, 2279–2287 (2017).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article 

    Google Scholar 

  • 13.

    Ricciardi, A. S., McNeer, N. A., Anandalingam, K. K., Saltzman, W. M. & Glazer, P. M. Targeted genome modification via triple helix formation. Methods Mol. Biol. 1176, 89–106 (2014).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Gaddis, S. S. et al. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides 16, 196–201 (2006).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Ebbinghaus, S. W. et al. Triplex formation inhibits HER-2/neu transcription in vitro. J. Clin. Invest. 92, 2433–2439 (1993).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kaushik Tiwari, M. & Rogers, F. A. XPD-dependent activation of apoptosis in response to triplex-induced DNA damage. Nucleic Acids Res. 41, 8979–8994 (2013).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kaushik Tiwari, M., Adaku, N., Peart, N. & Rogers, F. A. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells. Nucleic Acids Res. 44, 7742–7754 (2016).

    Article 

    Google Scholar 

  • 18.

    Rogers, F. A., Vasquez, K. M., Egholm, M. & Glazer, P. M. Site-directed recombination via bifunctional PNA–DNA conjugates. Proc. Natl Acad. Sci. USA 99, 16695–16700 (2002).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Wang, G., Seidman, M. M. & Glazer, P. M. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271, 802–805 (1996).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Szollosi, J., Balazs, M., Feuerstein, B. G., Benz, C. C. & Waldman, F. M. ERBB-2 (HER2/neu) gene copy number, p185HER-2 overexpression, and intratumor heterogeneity in human breast cancer. Cancer Res. 55, 5400–5407 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Vergote, I. et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med. 363, 943–953 (2010).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Jenjaroenpun, P. & Kuznetsov, V. A. TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 10, S9 (2009).

    Article 

    Google Scholar 

  • 23.

    Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    zum Buschenfelde, C. M., Hermann, C., Schmidt, B., Peschel, C. & Bernhard, H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res. 62, 2244–2247 (2002).

    Google Scholar 

  • 25.

    Cuello, M. et al. Down-regulation of the erbB-2 receptor by trastuzumab (Herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 61, 4892–4900 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Deng, Y. et al. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials 35, 6595–6602 (2014).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Bindra, R. S. & Glazer, P. M. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26, 2048–2057 (2007).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Balashanmugam, M. V. et al. Preparation and characterization of novel PBAE/PLGA polymer blend microparticles for DNA vaccine delivery. ScientificWorldJournal 2014, 385135 (2014).

    Article 

    Google Scholar 

  • 29.

    Seo, Y. E. et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 201, 87–98 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Oeck, S. et al. The Focinator v2-0—graphical interface, four channels, colocalization analysis and cell phase identification. Radiat. Res. 188, 114–120 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Oeck, S., Malewicz, N. M., Hurst, S., Rudner, J. & Jendrossek, V. The Focinator—a new open-source tool for high-throughput foci evaluation of DNA damage. Radiat. Oncol. 10, 163 (2015).

    Article 

    Google Scholar 

  • 32.

    Mandl, H. K. et al. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J. Control. Release 314, 92–101 (2019).

    CAS 
    Article 

    Google Scholar 

  • Source link