Preloader

Development of the first axillary in vitro shoot multiplication protocol for coconut palms

  • 1.

    Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Article 

    Google Scholar 

  • 2.

    Gunn, B. F., Baudouin, L. & Olsen, K. M. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS One 6, 1–8 (2011).

    Article 

    Google Scholar 

  • 3.

    Punchihewa, P. G. & Arancon, R. N. Coconut Post-harvest Operations. (Food and Agriculture Organization of the United Nations, 1999).

  • 4.

    Craig, R. D. Handbook of Polynesian Mythology. (ABC-CLIO, 2004).

  • 5.

    FAO. FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize (2021).

  • 6.

    Rhee, J. et al. Kick-off Meeting For The Project: ‘ Developing Cryopreservation Protocols For Subtropical Crops And Establishing Cryo-Genebank At RDA In Coordination With Bioversity International’. (National Agrobiodiversity Center, 2016).

  • 7.

    Santos, G. A., Batugal, P. A., Othman, A., Baudouin, L. & Labouisse, J. P. Manual on Standardized Research Techniques in Coconut Breeding. (International Plant Genetic Resources Institute, 1996).

  • 8.

    Eziashi, E. & Omamor, I. Lethal yellowing disease of the coconut palms (Cocos nucifera L.): an overview of the crises. African J. Biotechnol. 9, 9122–9127 (2010).

    Google Scholar 

  • 9.

    Vadamalai, G., Perera, A. A. F. L. K., Hanold, D., Rezaian, M. A. & Randles, J. W. Detection of Coconut cadang-cadang viroid sequences in oil and coconut palm by ribonuclease protection assay. Ann. Appl. Biol. 154, 117–125 (2009).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Chakravarthy, A. K., Chandrashekharaiah, M., Kandakoor, S. B. & Nagaraj, D. N. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros L.) from infested coconut palms. J. Environ. Biol. 35, 479–484 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Perera, S. A. C. N. Coconut. In Technological Innovations in Major World Oil Crops Vol. 1 (ed. Gupta, S. K.) 201–218 (Springer, 2012). https://doi.org/10.1007/978-1-4614-0356-2_8.

    Chapter 

    Google Scholar 

  • 12.

    Benson, E. Plant Conservation Biotechnology (CRC Press, 1999).

    Book 

    Google Scholar 

  • 13.

    Johnson, D. V. Non-Wood Forest Products-Tropical Palms. (1998).

  • 14.

    Cutter, V. J. & Wilson, K. Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot. Gaz. 115, 234–240 (1954).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Verdeil, J.-L., Huet, C., Grosdemange, F. & Buffard-Morel, J. Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep. 13, 218–221 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Rajesh, M. K., Karun, A. & Parthasarathy, V. A. Coconut biotechnology. The Coconut Palm (Cocos nucifera L.). Res. Dev. Perspect. https://doi.org/10.1007/978-981-13-2754-4_6 (2019).

    Article 

    Google Scholar 

  • 17.

    Vázquez, A. M. & Linacero, R. Stress and Somaclonal Variation. In Plant Developmental Biology-Biotechnological Perspectives Vol. 2 (eds Pua, E. C. & Davey, M. R.) 45–64 (Springer, 2010). https://doi.org/10.1007/978-3-642-04670-4_3.

    Chapter 

    Google Scholar 

  • 18.

    Fki, L. et al. Date Palm Micropropagation via Somatic Embryogenesis. In Date Palm Biotechnology (eds Jain, S. M. et al.) 47–68 (Springer, 2011). https://doi.org/10.1007/978-94-007-1318-5.

    Chapter 

    Google Scholar 

  • 19.

    Weckx, S., Inzé, D. & Maene, L. Tissue culture of oil palm: Finding the balance between mass propagation and somaclonal variation. Front. Plant Sci. 10, 16 (2019).

    Article 

    Google Scholar 

  • 20.

    George, E. F., Hall, M. A. & De Klerk, G.-J. Micropropagation: Uses and Methods. In Plant Propagation by Tissue Culture Vol. 1 (eds George, E. F. et al.) 29–64 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3_2.

    Chapter 

    Google Scholar 

  • 21.

    Sujatha, M., Vijay, S., Vasavi, S., Sivaraj, N. & Rao, S. C. Combination of thidiazuron and 2-isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell. Tissue Organ Cult. 111, 359–372 (2012).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Zhu, X. Y. et al. Induction and origin of adventitious shoots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell Rep. 26, 1727–1732 (2007).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Dobránszki, J. & Da Silva, J. A. T. Adventitious shoot regeneration from leaf thin cell layers in apple. Sci. Hortic. (Amsterdam). 127, 460–463 (2011).

    Article 

    Google Scholar 

  • 24.

    George, E. F., Hall, M. A. & De Klerk, G.-J. Adventitious Regeneration. In Plant Propagation by Tissue Culture Vol. 1 (eds George, E. F. et al.) 355–401 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3_10.

    Chapter 

    Google Scholar 

  • 25.

    Tomlinson, P. B. Branching in Monocotyledons. Q. Rev. Biol. 48, 458–466 (1973).

    Article 

    Google Scholar 

  • 26.

    Yaish, M. W. F., Guevara, D. R., El-Kereamy, A. & Rothstein, S. J. Axillary Shoot Branching in Plants. In Plant Developmental Biology-Biotechnological Perspectives Vol. 1 (eds Pua, E. C. & Davey, M. R.) 37–52 (Springer, 2010). https://doi.org/10.1007/978-3-642-02301-9_3.

    Chapter 

    Google Scholar 

  • 27.

    Brewer, P. B., Dun, E. A., Gui, R., Mason, M. G. & Beveridge, C. A. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol. 168, 1820–1829 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Müller, D. & Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 107, 1203–1212 (2011).

    Article 

    Google Scholar 

  • 29.

    Ahmad, N. & Faisal, M. Thidiazuron: from urea derivative to plant growth regulator. Thidiazuron Urea Deriv. Plant Growth Regul. https://doi.org/10.1007/978-981-10-8004-3 (2018).

    Article 

    Google Scholar 

  • 30.

    Punyarani, K. et al. In vitro production of genetically stable and virus free plantlets of Musa sp var. Meitei Hei using male inflorescence as explant. Sci. Hortic. 164, 440–447 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Bourdeix, R., Batugal, P., Oliver, J. & George, M. Catalogue of Conserved Coconut Germplasm. (International Coconut Genetic Resources Network (COGENT), 2010).

  • 32.

    Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q. & Biddle, J. Coconut Biotechnology.. Coconut Biotechnology (Springer, 2020).

    Google Scholar 

  • 33.

    Nguyen, Q. T. et al. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242, 1059–1076 (2015).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Mu, Z. Optimization of Coconut Micropropagation via Somatic Embryogenesis. in Proceedings vol. 36 55 (MDPI AG, 2020).

  • 35.

    Strosse, H. et al. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 170, 104–112 (2006).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Strosse, H., Andre, E., Sági, L., Swennen, R. & Panis, B. Adventitious shoot formation is not inherent to micropropagation of banana as it is in maize. Plant Cell. Tissue Organ Cult. 95, 321–332 (2008).

    Article 

    Google Scholar 

  • 37.

    Birmeta, G. & Welander, M. Efficient micropropagation of Ensete ventricosum applying meristem wounding: a three-step protocol. Plant Cell Rep. 23, 277–283 (2004).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Mohamed, Y. Micropropagation of pitaya (Hylocereus undatus Britton et Rose). Vitr. Cell. Dev. Biol. Plant 38, 427–429 (2002).

    Article 

    Google Scholar 

  • 39.

    Sisunandar, A. H. A. & Suyadi, A. Embryo incision as a new technique for double seedling production of indonesian elite coconut type “Kopyor”. J. Math. Fundam. Sci. 47, 252–260 (2015).

    Google Scholar 

  • 40.

    Montero-Cortés, M. et al. Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell. Tissue Organ Cult. 102, 251–258 (2010).

    Article 

    Google Scholar 

  • 41.

    Perera, P. I. P. et al. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep. 26, 21–28 (2007).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Sidky, R. Optimized Direct Organogenesis from Shoot Tip Explants of Date Palm. in Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (eds. Al-Khayri, J. M., Jain, S. M. & Johnson, D. V) 37–45 (Springer, 2017). https://doi.org/10.1007/978-1-4939-7156-5_4.

  • 43.

    Huetteman, C. A. & Preece, J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell. Tissue Organ Cult. 33, 105–119 (1993).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Bairu, M. W., Jain, N., Stirk, W. A., Doležal, K. & Van Staden, J. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. South African J. Bot. 75, 122–127 (2009).

    Article 

    Google Scholar 

  • 45.

    Nisler, J. TDZ: Mode of Action, Use and Potential in Agriculture. in Thidiazuron: From Urea Derivative to Plant Growth Regulator (eds. Ahmad, N. & Faisal, M.) 37–59 (Springer, 2018). https://doi.org/10.1007/978-981-10-8004-3_2.

  • 46.

    Hothorn, M., Dabi, T. & Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat. Chem. Biol. 7, 766–768 (2011).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Kopecný, D. et al. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study. Biochimie 92, 1052–1062 (2010).

    Article 

    Google Scholar 

  • 48.

    Mihaljević, S. & Vršek, I. In vitro shoot regeneration from immature seeds of Epimedium alpinum induced by thidiazuron and CPPU. Sci. Hortic. (Amsterdam) 120, 406–410 (2009).

    Article 

    Google Scholar 

  • 49.

    Sunagawa, H., Agarie, S., Umemoto, M., Makishi, Y. & Nose, A. Effect of urea-type cytokinins on the adventitious shoots regeneration from cotyledonary node explant in the common ice plant, Mesembryanthemum crystallinum. Plant Prod. Sci. 10, 47–56 (2007).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Krisanapook, K., Anusornpornpong, P. T. & Luengwilai, K. Inflorescence and flower development in Thai aromatic coconut. J. Appl. Hortic. 21, 3–12 (2019).

    Article 

    Google Scholar 

  • 51.

    Dewir, Y. H., Nurmansyah, N., Naidoo, Y. & da Silva, J. A. T. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37, 1451–1470 (2018).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Labouisse, J. P., Sileye, T., Bonnot, F. & Baudouin, L. Achievements in breeding coconut hybrids for tolerance to coconut foliar decay disease in Vanuatu, South Pacific. Euphytica 177, 1–13 (2011).

    Article 

    Google Scholar 

  • 53.

    Masmoudi-Allouche, F., Meziou, B., Kriaâ, W., Gargouri-Bouzid, R. & Drira, N. In Vitro flowering induction in date palm (Phoenix dactylifera L.). J. Plant Growth Regul. 29, 35–43 (2010).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Nizam, K. & Te-Chato, S. In vitro flowering and fruit setting of oil palm Elaeis guineensis Jacq. J. Agric. Technol. 8, 1079–1088 (2012).

    CAS 

    Google Scholar 

  • 55.

    Chiurugwi, T., Kemp, S., Powell, W. & Hickey, L. T. Speed breeding orphan crops. Theor. Appl. Genet. 132, 607–616 (2018).

    Article 

    Google Scholar 

  • 56.

    Abahmane, L. Cultivar-Dependent Direct Organogenesis of Date Palm from Shoot Tip Explants. in Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (eds. Al-Khayri, J. M., Jain, S. M. & Johnson, D. V) 3–15 (Springer, 2017). https://doi.org/10.1007/978-1-4939-7156-5_1.

  • 57.

    Engelmann, F., Malaurie, B. & N’Nan, O. In Vitro Culture of Coconut (Cocos nucifera L.) Zygotic Embryos. in Plant Embryo Culture: Methods and Protocols (eds. Thorpe, T. A. & Yeung, E. C.) 63–72 (Humana Press, 2011). https://doi.org/10.1007/978-1-61737-988-8_6.

  • 58.

    Eeuwens, C. J. Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol. Plant. 36, 23–28 (1976).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Wilms, H., Rhee, J. H., Rivera, R. L., Longin, K. & Panis, B. Developing coconut cryopreservation protocols and establishing cryo-genebank at RDA; a collaborative project between RDA and Bioversity International. Acta Hortic. 1234, 343–348. https://doi.org/10.17660/ActaHortic.2019.1234.45 (2019).

    Article 

    Google Scholar 

  • 60.

    Kim, H. H. et al. Bacterial contamination in cryopreservation of coconut zygotic embryos. Acta Hortic. 12, 65–72 (2019).

    Article 

    Google Scholar 

  • 61.

    Rillo, E. P., Cueto, C. A., Medes, W. R. & Areza-libaldo, M. B. Development of an improved embryo culture protocol for coconut in the Philippines. in Coconut embryo in vitro culture: part II (eds. Engelmann, F., Batugal, P. & Oliver, J.) 41–65 (IPGRI-APO, 2002).

  • Source link