Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
Google Scholar
Gunn, B. F., Baudouin, L. & Olsen, K. M. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS One 6, 1–8 (2011).
Google Scholar
Punchihewa, P. G. & Arancon, R. N. Coconut Post-harvest Operations. (Food and Agriculture Organization of the United Nations, 1999).
Craig, R. D. Handbook of Polynesian Mythology. (ABC-CLIO, 2004).
FAO. FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize (2021).
Rhee, J. et al. Kick-off Meeting For The Project: ‘ Developing Cryopreservation Protocols For Subtropical Crops And Establishing Cryo-Genebank At RDA In Coordination With Bioversity International’. (National Agrobiodiversity Center, 2016).
Santos, G. A., Batugal, P. A., Othman, A., Baudouin, L. & Labouisse, J. P. Manual on Standardized Research Techniques in Coconut Breeding. (International Plant Genetic Resources Institute, 1996).
Eziashi, E. & Omamor, I. Lethal yellowing disease of the coconut palms (Cocos nucifera L.): an overview of the crises. African J. Biotechnol. 9, 9122–9127 (2010).
Vadamalai, G., Perera, A. A. F. L. K., Hanold, D., Rezaian, M. A. & Randles, J. W. Detection of Coconut cadang-cadang viroid sequences in oil and coconut palm by ribonuclease protection assay. Ann. Appl. Biol. 154, 117–125 (2009).
Google Scholar
Chakravarthy, A. K., Chandrashekharaiah, M., Kandakoor, S. B. & Nagaraj, D. N. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros L.) from infested coconut palms. J. Environ. Biol. 35, 479–484 (2014).
Google Scholar
Perera, S. A. C. N. Coconut. In Technological Innovations in Major World Oil Crops Vol. 1 (ed. Gupta, S. K.) 201–218 (Springer, 2012). https://doi.org/10.1007/978-1-4614-0356-2_8.
Google Scholar
Benson, E. Plant Conservation Biotechnology (CRC Press, 1999).
Google Scholar
Johnson, D. V. Non-Wood Forest Products-Tropical Palms. (1998).
Cutter, V. J. & Wilson, K. Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot. Gaz. 115, 234–240 (1954).
Google Scholar
Verdeil, J.-L., Huet, C., Grosdemange, F. & Buffard-Morel, J. Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L.): evidence for somatic embryogenesis. Plant Cell Rep. 13, 218–221 (1994).
Google Scholar
Rajesh, M. K., Karun, A. & Parthasarathy, V. A. Coconut biotechnology. The Coconut Palm (Cocos nucifera L.). Res. Dev. Perspect. https://doi.org/10.1007/978-981-13-2754-4_6 (2019).
Google Scholar
Vázquez, A. M. & Linacero, R. Stress and Somaclonal Variation. In Plant Developmental Biology-Biotechnological Perspectives Vol. 2 (eds Pua, E. C. & Davey, M. R.) 45–64 (Springer, 2010). https://doi.org/10.1007/978-3-642-04670-4_3.
Google Scholar
Fki, L. et al. Date Palm Micropropagation via Somatic Embryogenesis. In Date Palm Biotechnology (eds Jain, S. M. et al.) 47–68 (Springer, 2011). https://doi.org/10.1007/978-94-007-1318-5.
Google Scholar
Weckx, S., Inzé, D. & Maene, L. Tissue culture of oil palm: Finding the balance between mass propagation and somaclonal variation. Front. Plant Sci. 10, 16 (2019).
Google Scholar
George, E. F., Hall, M. A. & De Klerk, G.-J. Micropropagation: Uses and Methods. In Plant Propagation by Tissue Culture Vol. 1 (eds George, E. F. et al.) 29–64 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3_2.
Google Scholar
Sujatha, M., Vijay, S., Vasavi, S., Sivaraj, N. & Rao, S. C. Combination of thidiazuron and 2-isopentenyladenine promotes highly efficient adventitious shoot regeneration from cotyledons of mature sunflower (Helianthus annuus L.) seeds. Plant Cell. Tissue Organ Cult. 111, 359–372 (2012).
Google Scholar
Zhu, X. Y. et al. Induction and origin of adventitious shoots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell Rep. 26, 1727–1732 (2007).
Google Scholar
Dobránszki, J. & Da Silva, J. A. T. Adventitious shoot regeneration from leaf thin cell layers in apple. Sci. Hortic. (Amsterdam). 127, 460–463 (2011).
Google Scholar
George, E. F., Hall, M. A. & De Klerk, G.-J. Adventitious Regeneration. In Plant Propagation by Tissue Culture Vol. 1 (eds George, E. F. et al.) 355–401 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3_10.
Google Scholar
Tomlinson, P. B. Branching in Monocotyledons. Q. Rev. Biol. 48, 458–466 (1973).
Google Scholar
Yaish, M. W. F., Guevara, D. R., El-Kereamy, A. & Rothstein, S. J. Axillary Shoot Branching in Plants. In Plant Developmental Biology-Biotechnological Perspectives Vol. 1 (eds Pua, E. C. & Davey, M. R.) 37–52 (Springer, 2010). https://doi.org/10.1007/978-3-642-02301-9_3.
Google Scholar
Brewer, P. B., Dun, E. A., Gui, R., Mason, M. G. & Beveridge, C. A. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol. 168, 1820–1829 (2015).
Google Scholar
Müller, D. & Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 107, 1203–1212 (2011).
Google Scholar
Ahmad, N. & Faisal, M. Thidiazuron: from urea derivative to plant growth regulator. Thidiazuron Urea Deriv. Plant Growth Regul. https://doi.org/10.1007/978-981-10-8004-3 (2018).
Google Scholar
Punyarani, K. et al. In vitro production of genetically stable and virus free plantlets of Musa sp var. Meitei Hei using male inflorescence as explant. Sci. Hortic. 164, 440–447 (2013).
Google Scholar
Bourdeix, R., Batugal, P., Oliver, J. & George, M. Catalogue of Conserved Coconut Germplasm. (International Coconut Genetic Resources Network (COGENT), 2010).
Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q. & Biddle, J. Coconut Biotechnology.. Coconut Biotechnology (Springer, 2020).
Nguyen, Q. T. et al. Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242, 1059–1076 (2015).
Google Scholar
Mu, Z. Optimization of Coconut Micropropagation via Somatic Embryogenesis. in Proceedings vol. 36 55 (MDPI AG, 2020).
Strosse, H. et al. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 170, 104–112 (2006).
Google Scholar
Strosse, H., Andre, E., Sági, L., Swennen, R. & Panis, B. Adventitious shoot formation is not inherent to micropropagation of banana as it is in maize. Plant Cell. Tissue Organ Cult. 95, 321–332 (2008).
Google Scholar
Birmeta, G. & Welander, M. Efficient micropropagation of Ensete ventricosum applying meristem wounding: a three-step protocol. Plant Cell Rep. 23, 277–283 (2004).
Google Scholar
Mohamed, Y. Micropropagation of pitaya (Hylocereus undatus Britton et Rose). Vitr. Cell. Dev. Biol. Plant 38, 427–429 (2002).
Google Scholar
Sisunandar, A. H. A. & Suyadi, A. Embryo incision as a new technique for double seedling production of indonesian elite coconut type “Kopyor”. J. Math. Fundam. Sci. 47, 252–260 (2015).
Montero-Cortés, M. et al. Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell. Tissue Organ Cult. 102, 251–258 (2010).
Google Scholar
Perera, P. I. P. et al. Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep. 26, 21–28 (2007).
Google Scholar
Sidky, R. Optimized Direct Organogenesis from Shoot Tip Explants of Date Palm. in Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (eds. Al-Khayri, J. M., Jain, S. M. & Johnson, D. V) 37–45 (Springer, 2017). https://doi.org/10.1007/978-1-4939-7156-5_4.
Huetteman, C. A. & Preece, J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell. Tissue Organ Cult. 33, 105–119 (1993).
Google Scholar
Bairu, M. W., Jain, N., Stirk, W. A., Doležal, K. & Van Staden, J. Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. South African J. Bot. 75, 122–127 (2009).
Google Scholar
Nisler, J. TDZ: Mode of Action, Use and Potential in Agriculture. in Thidiazuron: From Urea Derivative to Plant Growth Regulator (eds. Ahmad, N. & Faisal, M.) 37–59 (Springer, 2018). https://doi.org/10.1007/978-981-10-8004-3_2.
Hothorn, M., Dabi, T. & Chory, J. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat. Chem. Biol. 7, 766–768 (2011).
Google Scholar
Kopecný, D. et al. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study. Biochimie 92, 1052–1062 (2010).
Google Scholar
Mihaljević, S. & Vršek, I. In vitro shoot regeneration from immature seeds of Epimedium alpinum induced by thidiazuron and CPPU. Sci. Hortic. (Amsterdam) 120, 406–410 (2009).
Google Scholar
Sunagawa, H., Agarie, S., Umemoto, M., Makishi, Y. & Nose, A. Effect of urea-type cytokinins on the adventitious shoots regeneration from cotyledonary node explant in the common ice plant, Mesembryanthemum crystallinum. Plant Prod. Sci. 10, 47–56 (2007).
Google Scholar
Krisanapook, K., Anusornpornpong, P. T. & Luengwilai, K. Inflorescence and flower development in Thai aromatic coconut. J. Appl. Hortic. 21, 3–12 (2019).
Google Scholar
Dewir, Y. H., Nurmansyah, N., Naidoo, Y. & da Silva, J. A. T. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37, 1451–1470 (2018).
Google Scholar
Labouisse, J. P., Sileye, T., Bonnot, F. & Baudouin, L. Achievements in breeding coconut hybrids for tolerance to coconut foliar decay disease in Vanuatu, South Pacific. Euphytica 177, 1–13 (2011).
Google Scholar
Masmoudi-Allouche, F., Meziou, B., Kriaâ, W., Gargouri-Bouzid, R. & Drira, N. In Vitro flowering induction in date palm (Phoenix dactylifera L.). J. Plant Growth Regul. 29, 35–43 (2010).
Google Scholar
Nizam, K. & Te-Chato, S. In vitro flowering and fruit setting of oil palm Elaeis guineensis Jacq. J. Agric. Technol. 8, 1079–1088 (2012).
Google Scholar
Chiurugwi, T., Kemp, S., Powell, W. & Hickey, L. T. Speed breeding orphan crops. Theor. Appl. Genet. 132, 607–616 (2018).
Google Scholar
Abahmane, L. Cultivar-Dependent Direct Organogenesis of Date Palm from Shoot Tip Explants. in Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications (eds. Al-Khayri, J. M., Jain, S. M. & Johnson, D. V) 3–15 (Springer, 2017). https://doi.org/10.1007/978-1-4939-7156-5_1.
Engelmann, F., Malaurie, B. & N’Nan, O. In Vitro Culture of Coconut (Cocos nucifera L.) Zygotic Embryos. in Plant Embryo Culture: Methods and Protocols (eds. Thorpe, T. A. & Yeung, E. C.) 63–72 (Humana Press, 2011). https://doi.org/10.1007/978-1-61737-988-8_6.
Eeuwens, C. J. Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol. Plant. 36, 23–28 (1976).
Google Scholar
Wilms, H., Rhee, J. H., Rivera, R. L., Longin, K. & Panis, B. Developing coconut cryopreservation protocols and establishing cryo-genebank at RDA; a collaborative project between RDA and Bioversity International. Acta Hortic. 1234, 343–348. https://doi.org/10.17660/ActaHortic.2019.1234.45 (2019).
Google Scholar
Kim, H. H. et al. Bacterial contamination in cryopreservation of coconut zygotic embryos. Acta Hortic. 12, 65–72 (2019).
Google Scholar
Rillo, E. P., Cueto, C. A., Medes, W. R. & Areza-libaldo, M. B. Development of an improved embryo culture protocol for coconut in the Philippines. in Coconut embryo in vitro culture: part II (eds. Engelmann, F., Batugal, P. & Oliver, J.) 41–65 (IPGRI-APO, 2002).

