Preloader

Development of next-generation formulation against Fusarium oxysporum and unraveling bioactive antifungal metabolites of biocontrol agents

  • 1.

    Singh, A. K. & Kamal, S. Chemical control of wilt in tomato (Lycopersicon esculentum L.). Int. J. Hortic. 2, 5–6. https://doi.org/10.5376/ijh.2012.02.0002 (2012).

    Article 

    Google Scholar 

  • 2.

    Jiang, X., Qiao, F., Long, Y., Cong, H. & Sun, H. MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech 7, 354. https://doi.org/10.1007/s13205-017-0951-y (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Li, Y. T., Hwang, S. G., Huang, Y. M. & Huang, C. H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot. 110, 275–282. https://doi.org/10.1016/j.cropro.2017.03.021 (2018).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Muslim, A., Horinouchi, H., & Hyakumachi, M. Biological control of Fusarium wilt of tomato [Lycopersicon esculentum] with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience (Japan) (2003).

  • 5.

    Cao, Y. et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47, 495–506. https://doi.org/10.1007/s00374-011-0556-2 (2011).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Rocha, F. Y. O. et al. 2017 Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. lycopersici. Appl. Soil Ecol. 120, 8–19. https://doi.org/10.1016/j.apsoil.2017.07.025 (2017).

    Article 

    Google Scholar 

  • 7.

    Zaim, S., Bekkar, A. A. & Belabid, L. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris. Arch. Phytopathol. Plant Protect. 51, 217–226. https://doi.org/10.1080/03235408.2018.1447896 (2018).

    Article 

    Google Scholar 

  • 8.

    Hartmann, A., Schmid, M., Van Tuinen, D. & Berg, G. Plant-driven selection of microbes. Plant Soil 321, 235–257. https://doi.org/10.1007/s11104-008-9814-y (2009).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Zhao, Y. et al. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE 9, e92486. https://doi.org/10.1371/journal.pone.0092486 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 10.

    Deng, J. J. et al. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb. Technol. 112(35), 42. https://doi.org/10.1016/j.enzmictec.2018.02.002 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Nieto-Jacobo, M. F. et al. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci. 8, 102. https://doi.org/10.3389/fpls.2017.00102 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Lewis, J. A., Papavizas, G. C. & Lumsden, R. D. A new formulation system for the application of biocontrol fungi to soil. Biocontrol Sci. Technol. 1, 59–69. https://doi.org/10.1080/09583159109355186 (1991).

    Article 

    Google Scholar 

  • 13.

    Kumar, S., Thakur, M. & Rani, A. Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr. J. Agric. Res. 9, 3838–3852. https://doi.org/10.5897/AJAR2014.9061 (2014).

    Article 

    Google Scholar 

  • 14.

    Jangir, M., Pathak, R., Sharma, A., Sharma, S. & Sharma, S. Volatiles as strong markers for antifungal activity against Fusarium oxysporum f. sp. lycopersici. Indian Phytopathol. 72, 681–687. https://doi.org/10.1007/s42360-018-0073-4 (2019).

    Article 

    Google Scholar 

  • 15.

    Jangir, M., Sharma, S. & Sharma, S. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biol. Control 138, 104069. https://doi.org/10.1016/j.biocontrol.2019.104069 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Niranjana, S. R., Lalitha, S. & Hariprasad, P. Mass multiplication and formulations of biocontrol agents for use against Fusarium wilt of pigeonpea through seed treatment. Int. J. Pest Manag. 55, 317–324. https://doi.org/10.1007/s00344-009-9103-x (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Khan, W. et al. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28, 386–399 (2009).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sikkema, J., De Bont, J. A. & Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222. https://doi.org/10.1128/mr.59.2.201-222.1995 (1995).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Tang, R. et al. Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem. Cent. J. 7, 30. https://doi.org/10.1186/1752-153X-7-30 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Yano, T., Miyahara, Y., Morii, N., Okano, T. & Kubota, H. Pentanol and benzyl alcohol attack bacterial surface structures differently. Appl. Environ. Microbiol. 82, 402–408. https://doi.org/10.1128/AEM.02515-15 (2016).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 21.

    Garnica-Vergara, A. et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 209, 1496–1512. https://doi.org/10.1111/nph.13725 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    El-Benawy, N. M., Abdel-Fattah, G. M., Ghoneem, K. M. & Shabana, Y. M. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egypt. J. Basic Appl. Sci. 7, 267–280. https://doi.org/10.1080/2314808X.2020.1809849 (2020).

    Article 

    Google Scholar 

  • 23.

    Scarselletti, R. & Faull, J. L. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 98, 1207–1209. https://doi.org/10.1016/S0953-7562(09)80206-2 (1994).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Khan, R. A. A., Najeeb, S., Hussain, S., Xie, B. & Li, Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 8, 817. https://doi.org/10.3390/microorganisms8060817 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Srinivasa, N., Sriram, S., Singh, C. & Shivashankar, K. S. Secondary metabolites approach to study the bio-efficacy of Trichoderma asperellum isolates in India. Int. J. Curr. Microbiol. Appl. Sci. 6, 1105–1123. https://doi.org/10.20546/ijcmas.2017.605.120 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Srinivasa, N. & Devi, T. P. Separation and identification of antifungal compounds from Trichoderma species by GC–MS and their bio-efficacy against soil-borne pathogens. Bioinfolet A Q. J. Life Sci. 11, 255–257 (2014).

    Google Scholar 

  • 27.

    Li, S., Jin, X. & Chen, J. Effects of piperidine and piperideine alkaloids from the venom of red imported fire ants, Solenopsis invicta Buren, on Pythium ultimum Trow growth in vitro and the application of piperideine alkaloids to control cucumber damping-off in the greenhouse. Pest Manag. Sci. 68, 1546–1552. https://doi.org/10.1002/ps.3337 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Parikh, K. S. & Vyas, S. P. Synthesis and antimicrobial screening of some new s-triazine based piperazine and piperidine derivatives. Der Chemica Sinica 3, 430–434 (2012).

    CAS 

    Google Scholar 

  • 29.

    Morton, V. & Staub, T. A short history of fungicides. APSnet Features. St. Paul (MN): American Phytopathological Society (US) (2008).

  • 30.

    Pohl, C. H., Kock, J. L. F. & Thibane, V. S. Antifungal free fatty acids: A Review. Sci. Against Microbial Pathogens 3, 61–71 (2011).

    Google Scholar 

  • 31.

    Nuryanti, W. H. Screening of volatile compounds of Brotowali (Tinospora crispa) and antifungal activity against Candida albicans. Int. J. Pharmacog. Phytochemi. Res. 7, 132–136 (2015).

    Google Scholar 

  • 32.

    Shelat, C. D. & Vashi, R. T. Synthesis, characterization, chelating properties and anti-fungal activity of 2-(4-phenylpiperazinyl) methyl-3-(8-quinolinol-5-YL)-4 (3H)-quinazolinone. J. Chem. 2, 86–90. https://doi.org/10.1155/2005/973414 (2005).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Khan, I., Ibrar, A., Abbas, N. & Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem. 76, 193–244. https://doi.org/10.1016/j.ejmech.2014.02.005 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Zhang, J. et al. One pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety. Bio-org. Med. Chem. Lett. 26, 2273–2277. https://doi.org/10.1016/j.bmcl.2016.03.052 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Kumar, H. & Jain, S. Synthesis and antimicrobial evaluation of 4-benzylidene-pyrazolidine-3, 5-dione derivatives. Int. J. Pharm. Sci. Res. 4, 453–457 (2013).

    CAS 

    Google Scholar 

  • 36.

    Boussalah, N. et al. Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f. sp. albedinis and Saccharomyces cerevisiae yeast. J. Saudi. Chem. Soc. 17, 17–21. https://doi.org/10.1016/j.jscs.2011.02.016 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    El-Youbi, M. et al. Antibacterial and antifungal activities of new pyrazolic compounds. Moroccan J. Biol. 12, 9–13 (2015).

    Google Scholar 

  • 38.

    Al-Ghorbani, M., Lakshmi Ranganatha, V., Prashanth, T., Begum, B. & Khanum, S. A. In vitro antibacterial and antifungal evaluation of some benzophenone analogues. Der Pharma Chem. 5, 269–273. https://doi.org/10.1007/s13738-021-02230-y (2013).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Howell, C. R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Dis. 87, 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Senol, M., Nadaroglu, H., Dikbas, N. & Kotan, R. Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann. Clin. Microbiol. Antimicrob. 13, 35. https://doi.org/10.1186/s12941-014-0035-3 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Saber, W. I. et al. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol. Hung. 66, 436–448. https://doi.org/10.1556/018.66.2015.4.8 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Ting, A. S. Y. & Chai, J. Y. Chitinase and β-1, 3-glucanase activities of Trichoderma harzianum in response towards pathogenic and non-pathogenic isolates: Early indications of compatibility in consortium. Biocatal. Agric. Biotechnol. 4, 109–113. https://doi.org/10.1016/j.bcab.2014.10.003 (2015).

    Article 

    Google Scholar 

  • 43.

    Guleria, S., Walia, A., Chauhan, A. & Shirkot, C. K. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int. J. Food Microbiol. 232, 134–143. https://doi.org/10.1016/j.ijfoodmicro.2016.05.030 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Khan, N. et al. Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363. https://doi.org/10.3389/fmicb.2018.02363 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Kumar, P., Dubey, R. C. & Maheshwari, D. K. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167, 493–499. https://doi.org/10.1016/j.micres.2012.05.002 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Jeyarajan, R., Ramakrishnan, G., Dinakaran, D. & Sridar, R. Development of products Trichoderma viride and Bacillus subtilis for biocontrol of root rot diseases. In Biotechnology in India. (Ed Dwivedi, B. K.) 25–36 (Bioved Research Society, Allahabad, India, 1994).

  • 47.

    Szczech, M. & Maciorowski, R. Microencapsulation technique with organic additives for biocontrol agents. J. Hortic. Res. 24, 111–122. https://doi.org/10.1515/johr-2016-0013 (2016).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Li, Z. et al. Effects of bacteria-free filtrate from Bacillus megaterium strain L2 on the mycelium growth and spore germination of Alternaria alternata. Biotechnol. Biotechnol. Equip. 29, 1062–1068. https://doi.org/10.1080/13102818.2015.1068135 (2015).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Song, W. et al. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protect. 23, 243–247. https://doi.org/10.1016/j.cropro.2003.08.007 (2004).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Alnahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J Appl. Pharm. Sci. 2, 71–74. https://doi.org/10.7324/JAPS.2012.2915 (2012).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Zarei, M. et al. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz. J. Microbiol. 42, 1017–1029 (2011).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Jeong, M. H. et al. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microb. Pathog. 110, 645–653. https://doi.org/10.1016/j.micpath.2017.07.027 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Sen, A. & Batra, A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int. J. Curr. Pharm. Res. 4, 67–73 (2012).

    Google Scholar 

  • 54.

    Jangir, M., Pathak, R., Sharma, S. & Sharma, S. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol. Control 123, 60–70. https://doi.org/10.1016/j.biocontrol.2018.04.018 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Suleiman, M. M., McGaw, L. I., Naidoo, V. & Eloff, J. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement Altern. Med. 7, 64–78. https://doi.org/10.4314/ajtcam.v7i1.57269 (2010).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79. https://doi.org/10.1016/j.jpha.2015.11.005 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Source link