Preloader

Development of an in vitro tissue culture system for hammer coral (Fimbriaphyllia ancora) ovaries

  • 1.

    Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals. In Ecosystems of the World 25, Coral Reefs (eds Dubinsky, Z. & Stambler, N.) 133–207 (Elsevier, 1990).

    Google Scholar 

  • 2.

    Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: Comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60, 185–203 (1990).

    ADS 

    Google Scholar 

  • 3.

    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).

    Google Scholar 

  • 4.

    Harrison, P. L. Sexual reproduction in scleractinian corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 59–85 (Springer, 2011).

    Google Scholar 

  • 5.

    Pechenik, J. A. Biology of the Invertebrates 6th edn. (McGraw-Hill, Higher Education, 2010).

    Google Scholar 

  • 6.

    Brusca, R. C. & Brusca, G. J. Invertebrates (Basingstoke, 2003).

    Google Scholar 

  • 7.

    Shikina, S. et al. Involvement of GLWamide neuropeptides in polyp contraction of the adult stony coral Euphyllia ancora. Sci. Rep. 10, 9427 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Shikina, S., Chen, C. C., Chiu, Y. L., Tsai, P. H. & Chang, C. F. Apoptosis in gonadal somatic cells of scleractinian corals: Implications of structural adjustments for gamete production and release. Proc. Biol. Sci. 287, 20200578 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Licht, P., Breitenbach, G. L. & Congdon, J. D. Seasonal cycle in testicular activity, gonadotropin, and thyroxine in the painted turtle, Chrysemys picta, under natural conditions. Gen. Comp. Endocrinol. 59, 130–139 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Stamper, D. L. & Licht, P. Effect of gonadotropin-releasing hormone on gonadotropin biosyntheis. Biol. Reprod. 43, 420–426 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Hirschenhauser, K. et al. Seasonal relationships between plasma and fecal testosterone in response to GnRH in domestic ganders. Gen. Comp. Endocrinol. 118, 262–272 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Pierantoni, R., Cobellis, G., Meccariello, R. & Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int. Rev. Cytol. 218, 69–141 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Schulz, R. W. et al. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Shikina, S. & Chang, C. F. Sexual reproduction in stony corals and insight into the evolution of oogenesis in Cnidaria. In The Cnidaria, Past, Present and Future The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 49–268 (Springer, 2016).

    Google Scholar 

  • 15.

    Shafir, S., Van Rijn, J. & Rinkevich, B. Steps in the construction of underwater coral nursery, an essential component in reef restoration acts. Mar. Biol. 149, 679–687 (2006).

    Google Scholar 

  • 16.

    Shaish, L., Levy, G., Gomez, E. & Rinkevich, B. Fixed and suspended coral nurseries in the Philippines: Establishing the first step in the “gardening concept” of reef restoration. J. Exp. Mar. Biol. Ecol. 36, 86–97 (2008).

    Google Scholar 

  • 17.

    Johnson, M. E. et al. Caribbean Acropora restoration guide: best practices for propagation and population enhancement. In The Nature Conservancy, Arlington, VA, 52–53 https://dspace.mote.org/handle/2075/2910 (2011)

  • 18.

    Rinkevich, B. Rebuilding coral reefs: Does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).

    Google Scholar 

  • 19.

    Omori, M. Coral restoration research and technical developments: what we have learned so far. Mar. Biol. Res. 15, 377–409 (2019).

    Google Scholar 

  • 20.

    Chiu, Y. L., Shikina, S., Yoshioka, Y., Shinzato, C. & De Chang, C. F. novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: Molecular mechanisms underlying scleractinian gametogenesis. BMC Genom. 21, 732 (2020).

    CAS 

    Google Scholar 

  • 21.

    Yasuoka, Y., Shinzato, C. & Satoh, N. The mesoderm-forming gene brachyury regulates ectoderm–endoderm demarcation in the coral Acropora digitifera. Curr. Biol. 26, 2885–2892 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl. Acad. Sci. U.S.A. 115, 5235–5240 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Miura, T., Yamauchi, K., Takahashi, H. & Nagahama, Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. U.S.A. 88, 5774–5778 (1991).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Bouma, G. J., Cloud, J. G. & Nagler, J. J. An in vitro system for the long-term tissue culture of juvenile rainbow trout (Oncorhynchus mykiss) testis. J. Exp. Zool. A Comp. Exp. Biol. 303, 698–703 (2005).

    PubMed 

    Google Scholar 

  • 25.

    Leal, M. C. et al. Zebrafish primary testis tissue culture: An approach to study testis function ex vivo. Gen. Comp. Endocrinol. 162, 134–138 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Shikina, S. et al. Yolk formation in a stony coral Euphyllia ancora Cnidaria, Anthozoa: Insight into the evolution of Vitellogenesis in nonbilaterian animals. Endocrinology 154, 3447–3459 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Shikina, S. et al. Localization of early germ cells in a stony coral, Euphyllia ancora: Potential implications for a germline stem cell system in coral gametogenesis. Coral Reefs 34, 639–653 (2015).

    ADS 

    Google Scholar 

  • 28.

    Shikina, S. et al. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: A potential involvement in coral oogenesis. Sci. Rep. 6, 25868 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Frank, U., Rabinowitz, C. & Rinkevich, B. In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar. Biol. 120, 491–499 (1994).

    Google Scholar 

  • 30.

    Kopecky, E. J. & Ostrander, G. K. Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell. Dev. Biol. Anim. 35, 616–624 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Shikina, S. et al. Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa). PLoS ONE 7, 69 (2012).

    Google Scholar 

  • 33.

    Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Reyes-Bermudez, A. & Miller, D. J. In vitro culture of cells derived from larvae of the staghorn coral Acropora millepora. Coral Reefs 28, 859 (2009).

    ADS 

    Google Scholar 

  • 35.

    Nowotny, J. D., Connelly, M. T. & Traylor-Knowles, N. Novel methods to establish whole-body primary cell cultures for the cnidarians Nematostella vectensis and Pocillopora damicornis. Sci. Rep. 11, 4086 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Rinkevich, B. Marine invertebrate cell cultures: New millennium trends. Mar. Biotechnol. 7, 429–439 (2005).

    CAS 

    Google Scholar 

  • 37.

    Domart-Coulon, I. & Ostrander, G. K. Coral cell and tissue culture methods. In Diseases of Coral (eds Woodley, C. M. et al.) 489–505 (Wiley, 2015).

    Google Scholar 

  • 38.

    Gates, R. D., Baghdasarian, G. & Muscatine, L. Temperature stress causes host cell detachment in symbiotic cnidarians: Implication for coral bleaching. Biol. Bull. 182, 324–332 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Kingsley, R. J., Bernhardt, A. M., Wilbur, K. M. & Watabe, N. Scleroblast cultures from the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea). In Vitro Cell. Dev. Biol. 23, 297–302 (1987).

    Google Scholar 

  • 40.

    Domart-Coulon, I. J., Elbert, D. C., Scully, E. P., Calimlim, P. S. & Ostrander, G. K. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc. Natl. Acad. Sci. U.S.A. 98, 11885–11890 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Domart-Coulon, I. J. et al. A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar. Biol. 144, 583–592 (2004).

    Google Scholar 

  • 42.

    Helman, Y. et al. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 105, 54–58 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Auzoux-Bordenave, S. & Domart-Coulon, I. Short review marine invertebrate cell cultures as tools for biomineralization studies. J. Sci. Hal. Aquat. 2, 42–47 (2010).

    Google Scholar 

  • 44.

    Nesa, B. & Hidaka, M. High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. J. Exp. Mar. Biol. Ecol. 368, 81–87 (2009).

    Google Scholar 

  • 45.

    Downs, C. A., Fauth, J. E., Downs, V. D. & Ostrander, G. K. In vitro cell-toxicity screening as an alternative animal model for coral toxicology: Effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology 19, 171–184 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Kawamura, K., Nishitsuji, K., Shoguchi, E., Fujiwara, S. & Satoh, N. Establishing sustainable cell lines of a coral, Acropora tenuis. Mar. Biotechnol. 23, 1–16 (2021).

    Google Scholar 

  • 47.

    Harrison, P. L. et al. Mass spawning in tropical reef corals. Science 223, 1186–1189 (1984).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. In Proceedings of the Fifth International Coral Reef Congress (Tahiti, French Polynesia, 27 May–1 June) 343–348 (1985).

  • 49.

    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).

    Google Scholar 

  • 50.

    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).

    Google Scholar 

  • 51.

    Morgan, J. F., Morton, H. J. & Parker, R. C. The nutrition of animal cells in tissue culture. I. Initial studies on a synthetic medium. Proc. Soc. Exp. Biol. Med. 73, 1–8 (1950).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Morgan, J. F., Campbell, E. & Morton, H. J. The nutrition of animal tissues cultivated in vitro. I. A survey of natural materials as supplements to synthetic medium 199. J. Natl. Cancer Inst. 16, 557–567 (1995).

    Google Scholar 

  • 53.

    Ghosh, D., Ray, A. R. & Dasmahapatra, A. K. Primary culture of prawn hepatocytes in serum free media. In Vitro Cell. Dev. Biol. Anim. 31, 811–813 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Suja, C. P., Sukumaran, N. & Dharmaraj, S. Effect of culture media and tissue extracts in the mantle explant culture of abalone, Haliotis varia Linnaeus. Aquaculture 271, 516–522 (2007).

    Google Scholar 

  • 55.

    Mercurio, S., Di Benedetto, C., Sugni, M. & Candia Carnevali, M. D. Primary cell cultures from sea urchin ovaries: a new experimental tool. In Vitro Cell. Dev. Biol. Anim. 50, 139–145 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Conkling, M. et al. Breakthrough in marine invertebrate cell culture: Sponge cells divide rapidly in improved nutrient medium. Sci. Rep. 9, 17321 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Freeland-Graves, J. H. & Bavik, C. Coenzymes. In Encyclopedia of Food Sciences and Nutrition 2nd edn (eds Caballero, B. et al.) 1475–1481 (Elsevier, 2003).

    Google Scholar 

  • 58.

    Sinbad, O. O., Folorunsho, A. A., Olabisi, O. L., Ayoola, O. A. & Temitope, E. J. Vitamins as antioxidants. J. Food Nutr. Res. 2, 214–235 (2019).

    Google Scholar 

  • 59.

    Büntemeyer, H. & Lehmann, J. The role of vitamins in cell culture media. In Animal Cell Technology: From Target to Market (eds Lindner-Olsson, E. et al.) 204–206 (Springer, 2001).

    Google Scholar 

  • 60.

    Choi, H. S. et al. Vitamin D insufficiency in Korea-a greater threat to younger generation: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 96, 643–651 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Fitz, J. G. Regulation of cellular ATP release. Trans. Am. Clin. Climatol. Assoc. 118, 199–208 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Ciccarelli, R. et al. Effects of exogenous ATP and related analogues on the proliferation rate of dissociated primary cultures of rat astrocytes. J. Neurosci. Res. 39, 556–566 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Bow, J. K. Using Adenosine Triphosphate (ATP) as a substitute for mechanical stimulation for tissue engineering applications. https://qspace.library.queensu.ca/handle/1974/6290 (2012).

  • 64.

    Gstraunthaler, G. Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex 20, 275–281 (2003).

    PubMed 

    Google Scholar 

  • 65.

    Twan, W. H., Hwang, J. S. & Chang, C. F. Sex steroids in scleractinian coral, Euphyllia ancora: Implication in mass spawning. Biol. Reprod. 68, 2255–2260 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Twan, W. H. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 247–253 (2006).

    PubMed 

    Google Scholar 

  • 67.

    Mak, A. S. et al. Vitellogenesis in the red crab Charybdis feriatus: Hepatopancreas-specific expression and farnesoic acid stimulation of vitellogenin gene expression. Mol. Reprod. Dev. 70, 288–300 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Tsutsui, N. et al. The effects of crustacean hyperglycemic hormone-family peptides on vitellogenin gene expression in the kuruma prawn, Marsupenaeus japonicus. Gen. Comp. Endocrinol. 144, 232–239 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Tsutsui, N., Ohira, T., Kawazoe, I., Takahashi, A. & Wilder, M. N. Purification of sinus gland peptides having vitellogenesis-inhibiting activity from the whiteleg shrimp Litopenaeus vannamei. Mar. Biotechnol. (NY) 9, 360–309 (2007).

    CAS 

    Google Scholar 

  • Source link