Graceffa, V. Clinical development of cell therapies to halt lysosomal storage diseases: results and lessons learned. Curr. Gene Ther. https://doi.org/10.2174/1566523221666210728141924 (2021).
Google Scholar
Ariceta, G., Giordano, V. & Santos, F. Effects of long-term cysteamine treatment in patients with cystinosis. Pediatr. Nephrol. 34, 571–578 (2019).
Google Scholar
Cherqui, S. Cysteamine therapy: a treatment for cystinosis, not a cure. Kidney Int. 81, 127–129 (2012).
Google Scholar
Biswas, S. & Sornalingam, K. The ocular status of cystinosis patients receiving a hospital pharmacy-made preparation of cysteamine eye drops: a case series. Ophthalmol. Ther. 8, 125–136 (2019).
Google Scholar
Liang, H., Labbé, A., Le Mouhaër, J., Plisson, C. & Baudouin, C. A new viscous cysteamine eye drops treatment for ophthalmic cystinosis: an open-label randomized comparative phase III pivotal study. Investig. Ophthalmol. Vis. Sci. 58, 2275–2283 (2017).
Google Scholar
U.S. Food and Drug Administration. Cystaran – FDA prescribing information, side effects and uses. 1–5 (2012)
Makuloluwa, A. K. & Shams, F. Cysteamine hydrochloride eye drop solution for the treatment of corneal cystine crystal deposits in patients with cystinosis: an evidence-based review. Clin. Ophthalmol. 12, 227–236 (2018).
Google Scholar
Graceffa, V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J. Genet. Eng. Biotechnol. 19, 90 (2021).
Google Scholar
Yeung, A. M., Faraj, L. A., McIntosh, O. D., Dhillon, V. K. & Dua, H. S. Fibrin glue inhibits migration of ocular surface epithelial cells. Eye 30, 1389–1394 (2016).
Google Scholar
Queiroz de Paiva, A. R., Abreu de Azevedo Fraga, L. & Torres, V. L. L. Surgical reconstruction of ocular surface tumors using fibrin sealant tissue adhesive. Ocul. Oncol. Pathol. 2, 207–211 (2016).
Google Scholar
Han, B., Schwab, I. R., Madsen, T. K. & Isseroff, R. R. A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 21, 505–510 (2002).
Google Scholar
Weisel, J. W. & Litvinov, R. I. Mechanisms of fibrin polymerization and clinical implications. Blood 121, 1712–1719 (2013).
Google Scholar
Sacchi, V. et al. Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc. Natl. Acad. Sci. U. S. A. 111, 6952–6957 (2014).
Google Scholar
Lei, P., Padmashali, R. M. & Andreadis, S. T. Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30, 3790–3799 (2009).
Google Scholar
des Rieux, A., Shikanov, A. & Shea, L. D. Fibrin hydrogels for non-viral vector delivery in vitro. J. Control. Release 136, 148–154 (2009).
Google Scholar
Lei, Y., Rahim, M., Ng, Q. & Segura, T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J. Control. Release 153, 255–261 (2011).
Google Scholar
Saul, J. M., Linnes, M. P., Ratner, B. D., Giachelli, C. M. & Pun, S. H. Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. Biomaterials 28, 4705–4716 (2007).
Google Scholar
Shepard, J. A., Huang, A., Shikanov, A. & Shea, L. D. Balancing cell migration with matrix degradation enhances gene delivery to cells cultured three-dimensionally within hydrogels. J. Control. Release 146, 128–135 (2010).
Google Scholar
Willerth, S. M., Arendas, K. J., Gottlieb, D. I. & Sakiyama-Elbert, S. E. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27, 5990–6003 (2006).
Google Scholar
Li, Y., Meng, H., Liu, Y. & Lee, B. P. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J. 2015, 685690 (2015).
Fernandes-Cunha, G. M. et al. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 10, 16671 (2020).
Google Scholar
Kocatürk, T., Gençgönül, A., Balica, F., Özbağcivan, M. & Çakmak, H. Combined eye gel containing sodium hyaluronate and xanthan gum for the treatment of the corneal epithelial defect after pterygium surgery. Clin. Ophthalmol. 9, 1463–1466 (2015).
Google Scholar
Rama, P. et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72, 1478–1485 (2001).
Google Scholar
Ronfard, V., Rives, J. M., Neveux, Y., Carsin, H. & Barrandon, Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 70, 1588–1598 (2000).
Google Scholar
Harrison, F. et al. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol. Ther. 21, 433–444 (2013).
Google Scholar
Lobry, T. et al. Towards a phase I clinical trial for cystinosis. Mol. Ther. 24, S14–S15 (2016).
Dixon, P. & Chauhan, A. Carbon black tinted contact lenses for reduction of photophobia in cystinosis patients. Curr. Eye Res. 44, 497–504 (2019).
Google Scholar
Liu, Z., Kompella, U. B. & Chauhan, A. Gold nanoparticle synthesis in contact lenses for drug-less ocular cystinosis treatment. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharm. Verfahrenstechnik e.V 165, 271–278 (2021).
Google Scholar
Dixon, P. et al. In vitro drug release and in vivo safety of vitamin E and cysteamine loaded contact lenses. Int. J. Pharm. 544, 380–391 (2018).
Google Scholar
Noori, A., Ashrafi, S. J., Vaez-Ghaemi, R., Hatamian-Zaremi, A. & Webster, T. J. A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomedicine 12, 4937–4961 (2017).
Google Scholar
Mühleder, S. et al. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Res. Ther. 9, 35 (2018).
Google Scholar
Zhang, K., Fang, H., Qin, Y., Zhang, L. & Yin, J. Functionalized scaffold for in situ efficient gene transfection of mesenchymal stem cells spheroids toward chondrogenesis. ACS Appl. Mater. Interfaces 10, 33993–34004 (2018).
Google Scholar
Kong, H. J. et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat. Mater. 4, 460–464 (2005).
Google Scholar
Truong, N. F. et al. Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer. Acta Biomater. 94, 160–172 (2019).
Google Scholar
Modaresi, S., Pacelli, S., Whitlow, J. & Paul, A. Deciphering the role of substrate stiffness in enhancing the internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers. Nanoscale 10, 8947–8952 (2018).
Google Scholar
Brown, A. C. & Barker, T. H. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 10, 1502–1514 (2014).
Google Scholar
Ryan, E. A., Mockros, L. F., Weisel, J. W. & Lorand, L. Structural origins of fibrin clot rheology. Biophys. J. 77, 2813–2826 (1999).
Google Scholar
Fogelson, A. L. & Keener, J. P. Toward an understanding of fibrin branching structure. Phys. Rev. E. Stat. Nonlinera Soft Matter Phys. 81, 51922 (2010).
Google Scholar
Lei, Y. et al. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 31, 9106–9116 (2010).
Google Scholar
Cao, B. et al. How to optimize materials and devices via Design of Experiments and machine learning: Demonstration using organic photovoltaics. ACS Nano 12, 7434–7444 (2018).
Google Scholar
Levin, A., Sharma, V., Hook, L. & García-Gareta, E. The importance of factorial design in tissue engineering and biomaterials science: Optimisation of cell seeding efficiency on dermal scaffolds as a case study. J. Tissue Eng. 9, 2041731418781696–2041731418781696 (2018).
Google Scholar
Arafa, M. G. & Ayoub, B. M. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled d drug delivery systems. Sci. Rep. 7, 41503 (2017).
Google Scholar
Xu, L. et al. Design of experiment (DoE)-driven in vitro and in vivo uptake studies of exosomes for pancreatic cancer delivery enabled by copper-free click chemistry-based labelling. J. Extracell. Vesicles 9, 1779458 (2020).
Google Scholar
Decaris, M. L. & Leach, J. K. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation. Ann. Biomed. Eng. 39, 1174–1185 (2011).
Google Scholar
Kuterbekov, M. et al. Design of experiments to assess the effect of culture parameters on the osteogenic differentiation of human adipose stromal cells. Stem Cell Res. Ther. 10, 256 (2019).
Google Scholar
Naphade, S. et al. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33, 301–309 (2015).
Google Scholar
Yeagy, B. A. et al. Kidney preservation by bone marrow cell transplantation in hereditary nephropathy. Kidney Int. 79, 1198–1206 (2011).
Google Scholar
Syres, K. et al. Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 114, 2542–2552 (2009).
Google Scholar
Iglesias, D. M. et al. Stem cell microvesicles transfer cystinosin to human cystinotic cells and reduce cystine accumulation in vitro. PLoS ONE 7, e42840 (2012).
Google Scholar
Rocca, C. J. et al. Treatment of inherited eye defects by systemic hematopoietic stem cell transplantation. Investig. Ophthalmol. Vis. Sci. 56, 7214–7223 (2015).

