Preloader

Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition

  • Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gierahn, T. M. et al. RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, X. et al. Mapping the mouse cell atlas by Microwell-Seq. Cell 172, 1091–1107 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Fly cell atlas: a single-cell transcriptomic atlas of the adult fruit fly. Preprint at bioRxiv https://doi.org/10.1101/2021.07.04.451050 (2021).

  • Tabula Muris Consortium Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Google Scholar 

  • Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10X Genomics. Chromium Single Cell 3ʹ Reagent Kits User Guide (v3 Chemistry) (CG000183 Rev C) (2018).

  • DeLaughter, D. M. The use of the Fluidigm C1 for RNA expression analyses of single cells. Curr. Protoc. Mol. Biol. 122, e55 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981–987 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Packer, J. S. et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365, eaax1971 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 562, 66–72 (2019).

    Google Scholar 

  • Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).

    PubMed 

    Google Scholar 

  • Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tirier, S. M. et al. Pheno-seq: linking visual features and gene expression in 3D cell culture systems. Sci. Rep. 9, 12367 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Biocanin, M., Bues, J., Dainese, R., Amstad, E. & Deplancke, B. Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip. Lab Chip 19, 1610–1620 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, X. et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat. Methods 11, 106–112 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    CAS 

    Google Scholar 

  • Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Battich, N. et al. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science 367, 1151–1156 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Birchenough, G., Johansson, M., Gustafsson, J., Bergstrom, J. & Hansson, G. C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macnair, W. & Claassen, M. psupertime: supervised pseudotime inference for single cell RNA-seq data with sequential labels. Preprint at bioRxiv https://doi.org/10.1101/622001 (2019).

  • Lareau, C. A., Ma, S., Duarte, F. M. & Buenrostro, J. D. Inference and effects of barcode multiplets in droplet-based single-cell assays. Nat. Commun. 11, 866 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, M., Núñez, D., Cai, D. & Kurabayashi, K. Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging. Lab Chip 17, 3664–3671 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Y. H. et al. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat. Commun. 10, 2163 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat. Commun. 11, 2118 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dura, B. et al. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat. Commun. 6, 5940 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020).

    PubMed 

    Google Scholar 

  • Maier, G. L. et al. Multimodal and multisensory coding in the Drosophila larval peripheral gustatory center. Preprint at bioRxiv https://doi.org/10.1101/2020.05.21.109959 (2020).

  • Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mustata, R. C. et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 5, 421–432 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2016).

    Google Scholar 

  • Zhang, X. et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol. Cell 73, 130–142 (2019).

    PubMed 

    Google Scholar 

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldstein, L. D. et al. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics 18, 519 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Comparative analysis of commercially available single-cell RNA sequencing platforms for their performance in complex human tissues. Preprint at bioRxiv https://doi.org/10.1101/541433 (2019).

  • Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bas, T. & Augenlicht, L. H. Real time analysis of metabolic profile in ex vivo mouse intestinal crypt organoid cultures. J. Vis. Exp. 93, e52026 (2014).

  • Macosko, E., Goldman, M. & McCarroll, S. Drop-Seq Laboratory Protocol version 3.1. http://mccarrolllab.org/download/905/ (2015).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-dell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link