Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).
Google Scholar
del Río, J. C. et al. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain. Chem. Eng. 8, 4997–5012 (2020). A review of recent findings that valuable aromatic compounds, such as flavonoids, hydroxystilbenes, and hydroxycinnamic amides, can act as genuine lignin monomers in some plant species, challenging the conventional view of lignin composition and assembly.
Ralph, J. Hydroxycinnamates in lignification. Phytochem. Rev 9, 65–83 (2010).
Google Scholar
Davis, R. et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons (NREL, 2013).
Corona, A. et al. Life cycle assessment of adipic acid production from lignin. Green Chem. 20, 3857–3866 (2018).
Google Scholar
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).
Google Scholar
Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).
Google Scholar
Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. 55, 8164–8215 (2016).
Google Scholar
Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
Google Scholar
Sun, Z., Fridrich, B. L., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).
Google Scholar
Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. USA 111, 12013–12018 (2014).
Google Scholar
Bugg, T. D. H. & Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29, 10–17 (2015).
Google Scholar
Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D. & Vardon, D. R. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016).
Google Scholar
Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).
Google Scholar
Kamimura, N. et al. Bacterial catabolism of lignin‐derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ. Microbiol. Rep. 9, 679–705 (2017).
Google Scholar
Eltis, L. D. & Singh, R. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 290–313 (The Royal Society of Chemistry, 2018).
Seaton, S. C. & Neidle, E. L. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 252–289 (The Royal Society of Chemistry, 2018).
Liu, Z.-H. et al. Identifying and creating pathways to improve biological lignin valorization. Renew. Sust. Energ. Rev. 105, 349–362 (2019).
Google Scholar
Becker, J. & Wittmann, C. A field of dreams: lignin valorization into chemicals, materials, fuels and health-care products. Biotechnol. Adv. 37, 107360 (2019). A comprehensive review of technological advances in lignin recovery, breakdown, and conversion, particularly by microbial cell factories, that are enabling the first sustainable value chains using lignin.
Google Scholar
Vardon, D. R. et al. Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628 (2015).
Google Scholar
Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).
Google Scholar
Bugg, T. D. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59, 7075–7101 (2003).
Google Scholar
Vaillancourt, F. H., Bolin, J. T. & Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. 41, 241–267 (2006).
Google Scholar
Mycroft, Z., Gomis, M., Mines, P., Law, P. & Bugg, T. D. H. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem. 17, 4974–4979 (2015).
Google Scholar
Becker, J., Kuhl, M., Kohlstedt, M., Starck, S. & Wittmann, C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Micro. Cell Fact. 17, 115 (2018).
Higuchi, Y. et al. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Metab. Eng. 55, 258–267 (2019).
Google Scholar
Johnson, C. W. et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule 3, 1523–1537 (2019). The production of 16 metabolites of bacterial aromatic catabolism and their use in producing materials with superior properties relative to petroleum-derived analogs.
Google Scholar
Li, X. et al. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol. Biofuels 12, 60 (2019).
Google Scholar
Perez, J. M. et al. Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. Green Chem. 21, 1340–1350 (2019). S-, G- and H-type lignin monomers are biologically funnelled to a single product, 2-pyrone-4,6-dicarboxyic acid, in Novosphingobium aromaticivorans DSM 12444.
Google Scholar
Suzuki, Y. et al. Development of the production of 2-pyrone-4,6-dicarboxylic acid from lignin extracts, which are industrially formed as by-products, as raw materials. J. Biosci. Bioeng. 130, 71–75 (2020).
Google Scholar
Sonoki, T. et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192, 71–77 (2014).
Google Scholar
Johnson, C. W. et al. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab. Eng. Commun. 3, 111–119 (2016).
Google Scholar
Salvachúa, D. et al. Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 20, 5007–5019 (2018).
Kovaleva, E. G. & Lipscomb, J. D. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol. 4, 186–193 (2008).
Google Scholar
Mishina, Y. & He, C. Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J. Inorg. Biochem. 100, 670–678 (2006).
Google Scholar
Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).
Google Scholar
Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).
Google Scholar
Kweon, O. et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. 9, 11 (2008).
Google Scholar
Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).
Google Scholar
Masai, E. et al. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J. Bacteriol. 186, 2757–2765 (2004).
Google Scholar
Abe, T., Masai, E., Miyauchi, K., Katayama, Y. & Fukuda, M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 187, 2030–2037 (2005).
Google Scholar
Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).
Google Scholar
McIntosh, J. A., Farwell, C. C. & Arnold, F. H. Expanding P450 catalytic reaction space through evolution and engineering. Curr. Opin. Biotechnol. 19, 126–134 (2014).
Google Scholar
Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018). A detailed review of key metabolic pathways in Pseudomonas putida and analysis of the potential to leverage both native biochemistry and trans-metabolism for conversion of alternative feedstocks to valuable products in this chassis.
Google Scholar
Brunel, F. & Davison, J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J. Bacteriol. 170, 4924–4930 (1988).
Google Scholar
Buswell, J. A. & Ribbons, D. W. Vanillate O-demethylase from Pseudomonas species. Method. Enzymol. 161, 294–301 (1988).
Google Scholar
Notonier, S. et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metab. Eng. 65, 111–122 (2021).
Google Scholar
Hibi, M., Sonoki, T. & Mori, H. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol. Lett. 253, 237–242 (2005).
Google Scholar
Lanfranchi, E., Trajković, M., Barta, K., de Vries, J. G. & Janssen, D. B. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas Rieske monooxygenase. ChemBioChem 20, 118–125 (2019).
Google Scholar
Lamb, D. C., Waterman, M. R., Kelly, S. L. & Guengerich, F. P. Cytochromes P450 and drug discovery. Curr. Opin. Biotechnol. 18, 504–512 (2007).
Google Scholar
Li, S., Du, L. & Bernhardt, R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol. 28, 445–454 (2020).
Google Scholar
Correddu, D., Di Nardo, G. & Gilardi, G. Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications. Trends Biotechnol. 39, 1184–1207 (2021).
Google Scholar
Guengerich, F. P. Rate-limiting steps in cytochrome P450 catalysis. Biol. Chem. 383, 1553–1564 (2002).
Google Scholar
Eltis, L. D., Karlson, U. & Timmis, K. N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. Eur. J. Biochem. 213, 211–216 (1993).
Google Scholar
Karlson, U. et al. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J. Bacteriol. 175, 1467–1474 (1993).
Google Scholar
Bell, S. G. et al. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. Biochem. Biophys. Res. Commun. 342, 191–196 (2006).
Google Scholar
Bell, S. G. et al. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. J. Mol. Biol. 383, 561–574 (2008).
Google Scholar
Tumen-Velasquez, M. et al. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proc. Natl Acad. Sci. USA 115, 7105–7110 (2018).
Google Scholar
Mallinson, S. J. B. et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat. Commun. 9, 2487 (2018).
Google Scholar
Machovina, M. M. et al. Enabling microbial syringol conversion through structure-guided protein engineering. Proc. Natl Acad. Sci. USA 116, 13970–13976 (2019).
Google Scholar
Ellis, E. S. et al. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261 (2021). Structure-guided mutagenesis converts GcoA, a guaiacol O-demethylase, into an efficient catalyst toward aromatic aldehydes o– and p-vanillin.
Google Scholar
Fetherolf, M. M. et al. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl Acad. Sci. USA 117, 25771–25778 (2020). Cytochromes P450 from two Rhodococcus species catalyze the O-demethylation of lignin-derived.
Google Scholar
Nelson, D. R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta 1866, 141–154 (2018).
Google Scholar
Kawahara, N. et al. Purification and characterization of 2-ethoxyphenol-induced cytochrome P450 from Corynebacterium sp. strain EP1. Can. J. Microbiol. 45, 833–839 (1999).
Google Scholar
Sutherland, J. B. Demethylation of veratrole by cytochrome P-450 in Streptomyces setonii. Appl. Environ. Microbiol. 52, 98–100 (1986).
Google Scholar
Sauret-Ignazi, G., Dardas, A. & Pelmont, J. Purification and properties of cytochrome P-450 from Moraxella sp. Biochimie 70, 1385–1395 (1988).
Google Scholar
García-Hidalgo, J., Ravi, K., Kuré, L.-L., Lidén, G. & Gorwa-Grauslund, M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express 9, 34 (2019).
Google Scholar
Klenk, J. M., Ertl, J., Rapp, L., Fischer, M.-P. & Hauer, B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp. Mol. Catal. 484, 110739 (2020).
Google Scholar
Jiang, Y. et al. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal. Sci. Technol. 10, 1219–1223 (2020).
Google Scholar
Zhang, Z., Wang, Y., Zheng, P. & Sun, J. Promoting lignin valorization by coping with toxic C1 byproducts. Trends Biotechnol. 39, 331–335 (2020).
Google Scholar
Dev, I. K. & Harvey, R. J. Sources of one-carbon units in the folate pathway of Escherichia coli. J. Biol. Chem. 257, 1980–1986 (1982).
Google Scholar
Sonoki, T. et al. Tetrahydrofolate-dependent vanillate and syringate O-demethylation links tightly to one-carbon metabolic pathway associated with amino acid synthesis and DNA methylation in the lignin metabolism of Sphingomonas paucimobilis SYK-6. J. Wood Sci. 48, 434–439 (2002).
Google Scholar
Harada, A. et al. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6. FEBS J. 284, 1855–1867 (2017).
Google Scholar
Kohler, A. C., Mills, M. J. L., Adams, P. D., Simmons, B. A. & Sale, K. L. Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proc. Natl Acad. Sci. USA 114, E3205–E3214 (2017).
Google Scholar
Perez, J. M. et al. Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics. Appl. Environ. Microbiol. 87, e02794-20 (2021).
Google Scholar
Berman, M. H. & Frazer, A. C. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58, 925–931 (1992).
Google Scholar
Kaufmann, F., Wohlfarth, G. & Diekert, G. Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch. Microbiol. 168, 136–142 (1997).
Google Scholar
Naidu, D. & Ragsdale, S. W. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J. Bacteriol. 183, 3276–3281 (2001).
Google Scholar
Studenik, S., Vogel, M. & Diekert, G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J. Bacteriol. 194, 3317–3326 (2012).
Google Scholar
Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).
Google Scholar
Chenprakhon, P., Wongnate, T. & Chaiyen, P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Prot. Sci. 28, 8–29 (2019). Provides a comprehensive review of FMO mechanisms and structures for aromatic hydroxylation.
Google Scholar
Peng, R.-H. et al. in Reviews of Environmental Contamination and Toxicology (ed. Whitacre, D. M.) 65–94 (Springer, 2010).
Ingraham, L. L. & Meyer, D. L. in Biochemistry of Dioxygen Vol. 4 Biochemistry of the Elements 175–178 (Springer, 1985).
Fitzpatrick, P. F. Mechanism of aromatic amino acid hydroxylation. Biochemistry 42, 14083–14091 (2003).
Google Scholar
Lah, L. et al. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81, 1374–1389 (2011).
Google Scholar
Alber, A. & Ehlting, J. Cytochrome P450s in lignin biosynthesis. Adv. Bot. Res. 61, 113–143 (2012).
Google Scholar
Tinberg, C. E., Song, W. J., Izzo, V. & Lippard, S. J. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry 50, 1788–1798 (2011).
Google Scholar
Balashova, N. V. et al. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation 12, 179–188 (2001).
Google Scholar
Bosch, R., Moore, E. R., García-Valdés, E. & Pieper, D. H. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol. 181, 2315–2322 (1999).
Google Scholar
Furukawa, K., Suenaga, H. & Goto, M. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186, 5189–5196 (2004).
Google Scholar
Neidle, E. L. et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J. Bacteriol. 173, 5385–5395 (1991).
Google Scholar
Entsch, B. & van Berkel, W. J. Structure and mechanism of para-hydroxybenzoate hydroxylase. FASEB J. 9, 476–483 (1995). Pioneering investigation of aromatic hydroxylation that is still the foundation of studies published today.
Google Scholar
Eppink, M. H., Overkamp, K. M., Schreuder, H. A. & Van Berkel, W. J. Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase. J. Mol. Biol. 292, 87–96 (1999).
Google Scholar
Huang, Y., Zhao, K. X., Shen, X. H., Jiang, C. Y. & Liu, S. J. Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78, 75–83 (2008).
Google Scholar
Kasai, D. et al. Uncovering the protocatechuate 2, 3-cleavage pathway genes. J. Bacteriol. 191, 6758–6768 (2009).
Google Scholar
Huijbers, M. M. E., Montersino, S., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 544, 2–17 (2014).
Google Scholar
Chaiyen, P., Fraaije, M. W. & Mattevi, A. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 37, 373–380 (2012).
Google Scholar
Ellis, H. R. The FMN-dependent two-component monooxygenase systems. Arch. Biochem. Biophys. 497, 1–12 (2010).
Google Scholar
Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis. Biochemistry 44, 10434–10442 (2005).
Google Scholar
Palfey, B. A. & McDonald, C. A. Control of catalysis in flavin-dependent monooxygenases. Arch. Biochem. Biophys. 493, 26–36 (2010).
Google Scholar
Duffner, F. M., Kirchner, U., Bauer, M. P. & Müller, R. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene 256, 215–221 (2000).
Google Scholar
Levy-Booth, D. J. et al. Catabolism of alkylphenols in Rhodococcus via a meta-cleavage pathway associated with genomic islands. Front. Microbiol. 10, 1862 (2019).
Google Scholar
Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii. J. Biol. Chem. 281, 17044–17053 (2006).
Google Scholar
Hirayama, H. et al. Variation of the contents of biphenyl structures in lignins among wood species. Holzforschung 73, 569–578 (2019).
Google Scholar
Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).
Google Scholar
Rogers, M. S. & Lipscomb, J. D. Salicylate 5-hydroxylase: intermediates in aromatic hydroxylation by a Rieske monooxygenase. Biochemistry 58, 5305–5319 (2019).
Google Scholar
Fang, T. & Zhou, N.-Y. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2. Appl. Microbiol. Biotechnol. 98, 671–679 (2014).
Google Scholar
Parales, R. E. et al. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J. Bacteriol. 182, 1641–1649 (2000).
Google Scholar
Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. 54, 12952–12956 (2015).
Google Scholar
Ferraro, D. J., Okerlund, A., Brown, E. & Ramaswamy, S. One enzyme, many reactions: structural basis for the various reactions catalyzed by naphthalene 1,2-dioxygenase. IUCrJ 4, 648–656 (2017).
Google Scholar
Jouanneau, Y., Micoud, J. & Meyer, C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl. Environ. Microbiol. 73, 7515–7521 (2007).
Google Scholar
del Cerro, C. et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl Acad. Sci. USA 118, e2017381118 (2021).
Google Scholar
Seibert, C. M. & Raushel, F. M. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391 (2005).
Google Scholar
Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).
Google Scholar
Goto, M. et al. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (gamma-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J. Biol. Chem. 281, 34365–34373 (2006).
Google Scholar
Vladimirova, A. et al. Substrate distortion and the catalytic reaction mechanism of 5-carboxyvanillate decarboxylase. J. Am. Chem. Soc. 138, 826–836 (2016).
Google Scholar
Sheng, X. et al. Mechanism and structure of gamma-resorcylate decarboxylase. Biochemistry 57, 3167–3175 (2018).
Google Scholar
Sheng, X. et al. A combined experimental-theoretical study of the LigW-catalyzed decarboxylation of 5-carboxyvanillate in the metabolic pathway for lignin degradation. ACS Catal. 7, 4968–4974 (2017). The empirical determination of the identity of the CO2 as the reaction by product and density functional theory calculation that describes the molecular mechanism of the AHS-type decarboxylase.
Google Scholar
Peng, X. et al. A second 5-carboxyvanillate decarboxylase gene, ligW2, is important for lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 71, 5014–5021 (2005).
Google Scholar
Kasai, D. et al. γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 81, 7656–7665 (2015).
Google Scholar
Spence, E. M. et al. The hydroxyquinol degradation pathway in Rhodococcus jostii RHA1 and Agrobacterium species is an alternative pathway for degradation of protocatechuic acid and lignin fragments. Appl. Environ. Microbiol. 86, e01561–e01520 (2020).
Google Scholar
Meier, A. K. et al. Agdc1p—a gallic acid decarboxylase involved in the degradation of tannic acid in the yeast Blastobotrys (Arxula) adeninivorans. Front. Microbiol. 8, 1777 (2017).
Google Scholar
Brückner, C., Oreb, M., Kunze, G., Boles, E. & Tripp, J. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res. 18, foy017 (2018).
Zeug, M. et al. Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists. Sci. Rep. 11, 3056 (2021). A novel NTF2-type cofactorless gallate/protocatechuate decarboxylase from fungi.
Google Scholar
White, M. D. et al. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522, 502–506 (2015).
Google Scholar
Lupa, B., Lyon, D., Gibbs, M. D., Reeves, R. A. & Wiegel, J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86, 342–351 (2005).
Google Scholar
Lupa, B., Lyon, D., Shaw, L. N., Sieprawska-Lupa, M. & Wiegel, J. Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can. J. Microbiol. 54, 75–81 (2008).
Google Scholar
Payne, K. A. et al. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522, 497–501 (2015).
Google Scholar
Wang, P. H. et al. Biosynthesis and activity of prenylated FMN cofactors. Cell Chem. Biol. 25, 560–570 (2018).
Google Scholar
Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).
Google Scholar
Payer, S. E. et al. Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase. Angew. Chem. Int. Ed. 56, 13893–13897 (2017). Structural and catalytic properties of the UbiD-type decarboxylase.
Google Scholar
Grant, D. J. & Patel, J. C. The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek 35, 325–343 (1969).
Google Scholar
Matsui, T., Yoshida, T., Hayashi, T. & Nagasawa, T. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch. Microbiol. 186, 21–29 (2006).
Google Scholar
Holesova, Z. et al. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology 157, 2152–2163 (2011).
Google Scholar
Katagiri, M., Takemori, S., Suzuki, K. & Yasuda, H. Mechanism of the salicylate hydroxylase reaction. J. Biol. Chem. 241, 5675–5677 (1966).
Google Scholar
Reiner, A. M. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD+) oxidoreductase (decarboxylating). J. Biol. Chem. 247, 4960–4965 (1972).
Google Scholar
Neidle, E. et al. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204, 113–120 (1992).
Google Scholar
Reiner, A. M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J. Bacteriol. 108, 89–94 (1971).
Google Scholar
Cho, O. et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem. Biophys. Res. Commun. 327, 656–662 (2005).
Google Scholar
Becker, J. & Wittmann, C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials and health-care products. Angew. Chem. Int. Ed. 54, 3328–3350 (2015).
Google Scholar
Kuatsjah, E. et al. Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab. Eng. 70, 31–42 (2021).
Zobel, S., Kuepper, J., Ebert, B., Wierckx, N. & Blank, L. M. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng. Life Sci. 17, 47–57 (2017).
Google Scholar
Lubbers, R. J. M. et al. Discovery of novel p-hydroxybenzoate-m-hydroxylase, protocatechuate 3,4 ring-cleavage dioxygenase, and hydroxyquinol 1,2 ring-cleavage dioxygenase from the filamentous fungus Aspergillus niger. ACS Sustain. Chem. Eng. 7, 19081–19089 (2019).
Google Scholar
Wang, M., Chen, B., Fang, Y. & Tan, T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol. Adv. 35, 1032–1039 (2017).
Google Scholar
Bell, S. G., Tan, A. B., Johnson, E. O. & Wong, L.-L. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol. Biosyst. 6, 206–214 (2009).
Google Scholar
Khatri, Y., Schifrin, A. & Bernhardt, R. Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial CYP 260A1. FEBS Lett. 591, 1126–1140 (2017).
Google Scholar
To, P., Whitehead, B., Tarbox, H. E. & Fried, S. D. Nonrefoldability is pervasive across the E. coli proteome. J. Am. Chem. Soc. 143, 11435–11448 (2021).
Google Scholar
Zhu, Z. et al. Development of engineered ferredoxin reductase systems for the efficient hydroxylation of steroidal substrates. ACS Sustain. Chem. Eng. 8, 16720–16730 (2020).
Google Scholar
Zhang, W. et al. New reactions and products resulting from alternative interactions between the p450 enzyme and redox partners. J. Am. Chem. Soc. 136, 3640–3646 (2014).
Google Scholar
Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 257 (2016).
Google Scholar
Nguyen, L. T., Tran, M. H. & Lee, E. Y. Co-upgrading of ethanol-assisted depolymerized lignin: a new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresour. Technol. 338, 125563 (2021).
Google Scholar
Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019). A comprehensive review of adaptive laboratory evolution principles, applications and potential to optimize relevant features of industrial microbial chassis.
Google Scholar
Mohamed, E. T. et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab. Eng. Commun. 11, e00143 (2020).
Google Scholar
Salvachúa, D. et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. USA 117, 9302–9310 (2020).
Google Scholar
Alves, N. J. et al. Bacterial nanobioreactors—directing enzyme packaging into bacterial outer membrane vesicles. ACS Appl. Mater. Interfaces 7, 24963–24972 (2015).
Google Scholar
Elmore, J. R. et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12, 2261 (2021).
Google Scholar
Foo, J. L., Ching, C. B., Chang, M. W. & Leong, S. S. J. The imminent role of protein engineering in synthetic biology. Biotechnol. Adv. 30, 541–549 (2012).
Google Scholar
Maxel, S. et al. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site. ACS Catal. 10, 6969–6974 (2020).
Google Scholar
Jha, R. K. et al. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab. Eng. Commun. 6, 33–38 (2018).
Google Scholar
Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).
Google Scholar
Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl Acad. Sci. USA 116, 23117 (2019).
Google Scholar
Wada, A. et al. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab. Eng. 64, 167–179 (2021).
Google Scholar
Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).
Google Scholar
Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).
Google Scholar
Entsch, B., Cole, L. J. & Ballou, D. P. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch. Biochem. Biophys. 433, 297–311 (2005). A summary of the p-hydroxybenzoate hydroxylase catalytic cycle.
Google Scholar
van Berkel, W. J. H., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006).
Google Scholar
Leys, D. Flavin metamorphosis: cofactor transformation through prenylation. Curr. Opin. Chem. Biol. 47, 117–125 (2018).
Google Scholar

