Preloader

Critical enzyme reactions in aromatic catabolism for microbial lignin conversion

  • Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • del Río, J. C. et al. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain. Chem. Eng. 8, 4997–5012 (2020). A review of recent findings that valuable aromatic compounds, such as flavonoids, hydroxystilbenes, and hydroxycinnamic amides, can act as genuine lignin monomers in some plant species, challenging the conventional view of lignin composition and assembly.

    Google Scholar 

  • Ralph, J. Hydroxycinnamates in lignification. Phytochem. Rev 9, 65–83 (2010).

    CAS 

    Google Scholar 

  • Davis, R. et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid Prehydrolysis and Enzymatic Hydrolysis Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons (NREL, 2013).

  • Corona, A. et al. Life cycle assessment of adipic acid production from lignin. Green Chem. 20, 3857–3866 (2018).

    CAS 

    Google Scholar 

  • Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    PubMed 

    Google Scholar 

  • Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. 55, 8164–8215 (2016).

    CAS 

    Google Scholar 

  • Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, Z., Fridrich, B. L., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. USA 111, 12013–12018 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bugg, T. D. H. & Rahmanpour, R. Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29, 10–17 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D. & Vardon, D. R. Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42, 40–53 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kamimura, N. et al. Bacterial catabolism of lignin‐derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ. Microbiol. Rep. 9, 679–705 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Eltis, L. D. & Singh, R. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 290–313 (The Royal Society of Chemistry, 2018).

  • Seaton, S. C. & Neidle, E. L. in Lignin Valorization: Emerging Approaches Vol. 19 (ed. Beckham, G. T.) 252–289 (The Royal Society of Chemistry, 2018).

  • Liu, Z.-H. et al. Identifying and creating pathways to improve biological lignin valorization. Renew. Sust. Energ. Rev. 105, 349–362 (2019).

    CAS 

    Google Scholar 

  • Becker, J. & Wittmann, C. A field of dreams: lignin valorization into chemicals, materials, fuels and health-care products. Biotechnol. Adv. 37, 107360 (2019). A comprehensive review of technological advances in lignin recovery, breakdown, and conversion, particularly by microbial cell factories, that are enabling the first sustainable value chains using lignin.

    CAS 
    PubMed 

    Google Scholar 

  • Vardon, D. R. et al. Adipic acid production from lignin. Energy Environ. Sci. 8, 617–628 (2015).

    CAS 

    Google Scholar 

  • Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds—from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bugg, T. D. Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59, 7075–7101 (2003).

    CAS 

    Google Scholar 

  • Vaillancourt, F. H., Bolin, J. T. & Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. 41, 241–267 (2006).

    CAS 

    Google Scholar 

  • Mycroft, Z., Gomis, M., Mines, P., Law, P. & Bugg, T. D. H. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chem. 17, 4974–4979 (2015).

    CAS 

    Google Scholar 

  • Becker, J., Kuhl, M., Kohlstedt, M., Starck, S. & Wittmann, C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Micro. Cell Fact. 17, 115 (2018).

    Google Scholar 

  • Higuchi, Y. et al. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Metab. Eng. 55, 258–267 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Johnson, C. W. et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule 3, 1523–1537 (2019). The production of 16 metabolites of bacterial aromatic catabolism and their use in producing materials with superior properties relative to petroleum-derived analogs.

    CAS 

    Google Scholar 

  • Li, X. et al. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnol. Biofuels 12, 60 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez, J. M. et al. Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with Novosphingobium aromaticivorans. Green Chem. 21, 1340–1350 (2019). S-, G- and H-type lignin monomers are biologically funnelled to a single product, 2-pyrone-4,6-dicarboxyic acid, in Novosphingobium aromaticivorans DSM 12444.

    CAS 

    Google Scholar 

  • Suzuki, Y. et al. Development of the production of 2-pyrone-4,6-dicarboxylic acid from lignin extracts, which are industrially formed as by-products, as raw materials. J. Biosci. Bioeng. 130, 71–75 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sonoki, T. et al. Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J. Biotechnol. 192, 71–77 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Johnson, C. W. et al. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Metab. Eng. Commun. 3, 111–119 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvachúa, D. et al. Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 20, 5007–5019 (2018).

    Google Scholar 

  • Kovaleva, E. G. & Lipscomb, J. D. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol. 4, 186–193 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishina, Y. & He, C. Oxidative dealkylation DNA repair mediated by the mononuclear non-heme iron AlkB proteins. J. Inorg. Biochem. 100, 670–678 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Kweon, O. et al. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. 9, 11 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems—biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Masai, E. et al. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate. J. Bacteriol. 186, 2757–2765 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abe, T., Masai, E., Miyauchi, K., Katayama, Y. & Fukuda, M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J. Bacteriol. 187, 2030–2037 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jung, S. T., Lauchli, R. & Arnold, F. H. Cytochrome P450: taming a wild type enzyme. Curr. Opin. Biotechnol. 22, 809–817 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McIntosh, J. A., Farwell, C. C. & Arnold, F. H. Expanding P450 catalytic reaction space through evolution and engineering. Curr. Opin. Biotechnol. 19, 126–134 (2014).

    CAS 

    Google Scholar 

  • Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018). A detailed review of key metabolic pathways in Pseudomonas putida and analysis of the potential to leverage both native biochemistry and trans-metabolism for conversion of alternative feedstocks to valuable products in this chassis.

    CAS 
    PubMed 

    Google Scholar 

  • Brunel, F. & Davison, J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J. Bacteriol. 170, 4924–4930 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buswell, J. A. & Ribbons, D. W. Vanillate O-demethylase from Pseudomonas species. Method. Enzymol. 161, 294–301 (1988).

    CAS 

    Google Scholar 

  • Notonier, S. et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metab. Eng. 65, 111–122 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hibi, M., Sonoki, T. & Mori, H. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol. Lett. 253, 237–242 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Lanfranchi, E., Trajković, M., Barta, K., de Vries, J. G. & Janssen, D. B. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas Rieske monooxygenase. ChemBioChem 20, 118–125 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Lamb, D. C., Waterman, M. R., Kelly, S. L. & Guengerich, F. P. Cytochromes P450 and drug discovery. Curr. Opin. Biotechnol. 18, 504–512 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Li, S., Du, L. & Bernhardt, R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol. 28, 445–454 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Correddu, D., Di Nardo, G. & Gilardi, G. Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications. Trends Biotechnol. 39, 1184–1207 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Guengerich, F. P. Rate-limiting steps in cytochrome P450 catalysis. Biol. Chem. 383, 1553–1564 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Eltis, L. D., Karlson, U. & Timmis, K. N. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous. Eur. J. Biochem. 213, 211–216 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Karlson, U. et al. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J. Bacteriol. 175, 1467–1474 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, S. G. et al. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. Biochem. Biophys. Res. Commun. 342, 191–196 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Bell, S. G. et al. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. J. Mol. Biol. 383, 561–574 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tumen-Velasquez, M. et al. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments. Proc. Natl Acad. Sci. USA 115, 7105–7110 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallinson, S. J. B. et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat. Commun. 9, 2487 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Machovina, M. M. et al. Enabling microbial syringol conversion through structure-guided protein engineering. Proc. Natl Acad. Sci. USA 116, 13970–13976 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellis, E. S. et al. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261 (2021). Structure-guided mutagenesis converts GcoA, a guaiacol O-demethylase, into an efficient catalyst toward aromatic aldehydes o– and p-vanillin.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fetherolf, M. M. et al. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl Acad. Sci. USA 117, 25771–25778 (2020). Cytochromes P450 from two Rhodococcus species catalyze the O-demethylation of lignin-derived.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, D. R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta 1866, 141–154 (2018).

    CAS 

    Google Scholar 

  • Kawahara, N. et al. Purification and characterization of 2-ethoxyphenol-induced cytochrome P450 from Corynebacterium sp. strain EP1. Can. J. Microbiol. 45, 833–839 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Sutherland, J. B. Demethylation of veratrole by cytochrome P-450 in Streptomyces setonii. Appl. Environ. Microbiol. 52, 98–100 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sauret-Ignazi, G., Dardas, A. & Pelmont, J. Purification and properties of cytochrome P-450 from Moraxella sp. Biochimie 70, 1385–1395 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • García-Hidalgo, J., Ravi, K., Kuré, L.-L., Lidén, G. & Gorwa-Grauslund, M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express 9, 34 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klenk, J. M., Ertl, J., Rapp, L., Fischer, M.-P. & Hauer, B. Expression and characterization of the benzoic acid hydroxylase CYP199A25 from Arthrobacter sp. Mol. Catal. 484, 110739 (2020).

    CAS 

    Google Scholar 

  • Jiang, Y. et al. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal. Sci. Technol. 10, 1219–1223 (2020).

    CAS 

    Google Scholar 

  • Zhang, Z., Wang, Y., Zheng, P. & Sun, J. Promoting lignin valorization by coping with toxic C1 byproducts. Trends Biotechnol. 39, 331–335 (2020).

    PubMed 

    Google Scholar 

  • Dev, I. K. & Harvey, R. J. Sources of one-carbon units in the folate pathway of Escherichia coli. J. Biol. Chem. 257, 1980–1986 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • Sonoki, T. et al. Tetrahydrofolate-dependent vanillate and syringate O-demethylation links tightly to one-carbon metabolic pathway associated with amino acid synthesis and DNA methylation in the lignin metabolism of Sphingomonas paucimobilis SYK-6. J. Wood Sci. 48, 434–439 (2002).

    CAS 

    Google Scholar 

  • Harada, A. et al. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6. FEBS J. 284, 1855–1867 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kohler, A. C., Mills, M. J. L., Adams, P. D., Simmons, B. A. & Sale, K. L. Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proc. Natl Acad. Sci. USA 114, E3205–E3214 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez, J. M. et al. Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics. Appl. Environ. Microbiol. 87, e02794-20 (2021).

    PubMed Central 

    Google Scholar 

  • Berman, M. H. & Frazer, A. C. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58, 925–931 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaufmann, F., Wohlfarth, G. & Diekert, G. Isolation of O-demethylase, an ether-cleaving enzyme system of the homoacetogenic strain MC. Arch. Microbiol. 168, 136–142 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Naidu, D. & Ragsdale, S. W. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica. J. Bacteriol. 183, 3276–3281 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Studenik, S., Vogel, M. & Diekert, G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J. Bacteriol. 194, 3317–3326 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ralph, J., Lapierre, C. & Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 56, 240–249 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Chenprakhon, P., Wongnate, T. & Chaiyen, P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Prot. Sci. 28, 8–29 (2019). Provides a comprehensive review of FMO mechanisms and structures for aromatic hydroxylation.

    CAS 

    Google Scholar 

  • Peng, R.-H. et al. in Reviews of Environmental Contamination and Toxicology (ed. Whitacre, D. M.) 65–94 (Springer, 2010).

  • Ingraham, L. L. & Meyer, D. L. in Biochemistry of Dioxygen Vol. 4 Biochemistry of the Elements 175–178 (Springer, 1985).

  • Fitzpatrick, P. F. Mechanism of aromatic amino acid hydroxylation. Biochemistry 42, 14083–14091 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Lah, L. et al. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81, 1374–1389 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Alber, A. & Ehlting, J. Cytochrome P450s in lignin biosynthesis. Adv. Bot. Res. 61, 113–143 (2012).

    CAS 

    Google Scholar 

  • Tinberg, C. E., Song, W. J., Izzo, V. & Lippard, S. J. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry 50, 1788–1798 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Balashova, N. V. et al. Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation 12, 179–188 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Bosch, R., Moore, E. R., García-Valdés, E. & Pieper, D. H. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. J. Bacteriol. 181, 2315–2322 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, K., Suenaga, H. & Goto, M. Biphenyl dioxygenases: functional versatilities and directed evolution. J. Bacteriol. 186, 5189–5196 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neidle, E. L. et al. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J. Bacteriol. 173, 5385–5395 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Entsch, B. & van Berkel, W. J. Structure and mechanism of para-hydroxybenzoate hydroxylase. FASEB J. 9, 476–483 (1995). Pioneering investigation of aromatic hydroxylation that is still the foundation of studies published today.

    CAS 
    PubMed 

    Google Scholar 

  • Eppink, M. H., Overkamp, K. M., Schreuder, H. A. & Van Berkel, W. J. Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase. J. Mol. Biol. 292, 87–96 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y., Zhao, K. X., Shen, X. H., Jiang, C. Y. & Liu, S. J. Genetic and biochemical characterization of a 4-hydroxybenzoate hydroxylase from Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78, 75–83 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kasai, D. et al. Uncovering the protocatechuate 2, 3-cleavage pathway genes. J. Bacteriol. 191, 6758–6768 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huijbers, M. M. E., Montersino, S., Westphal, A. H., Tischler, D. & van Berkel, W. J. H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 544, 2–17 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Chaiyen, P., Fraaije, M. W. & Mattevi, A. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 37, 373–380 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Ellis, H. R. The FMN-dependent two-component monooxygenase systems. Arch. Biochem. Biophys. 497, 1–12 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis. Biochemistry 44, 10434–10442 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Palfey, B. A. & McDonald, C. A. Control of catalysis in flavin-dependent monooxygenases. Arch. Biochem. Biophys. 493, 26–36 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Duffner, F. M., Kirchner, U., Bauer, M. P. & Müller, R. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene 256, 215–221 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Levy-Booth, D. J. et al. Catabolism of alkylphenols in Rhodococcus via a meta-cleavage pathway associated with genomic islands. Front. Microbiol. 10, 1862 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii. J. Biol. Chem. 281, 17044–17053 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hirayama, H. et al. Variation of the contents of biphenyl structures in lignins among wood species. Holzforschung 73, 569–578 (2019).

    CAS 

    Google Scholar 

  • Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Rogers, M. S. & Lipscomb, J. D. Salicylate 5-hydroxylase: intermediates in aromatic hydroxylation by a Rieske monooxygenase. Biochemistry 58, 5305–5319 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Fang, T. & Zhou, N.-Y. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2. Appl. Microbiol. Biotechnol. 98, 671–679 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Parales, R. E. et al. Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J. Bacteriol. 182, 1641–1649 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gally, C., Nestl, B. M. & Hauer, B. Engineering Rieske non-heme iron oxygenases for the asymmetric dihydroxylation of alkenes. Angew. Chem. Int. Ed. 54, 12952–12956 (2015).

    CAS 

    Google Scholar 

  • Ferraro, D. J., Okerlund, A., Brown, E. & Ramaswamy, S. One enzyme, many reactions: structural basis for the various reactions catalyzed by naphthalene 1,2-dioxygenase. IUCrJ 4, 648–656 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jouanneau, Y., Micoud, J. & Meyer, C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl. Environ. Microbiol. 73, 7515–7521 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • del Cerro, C. et al. Intracellular pathways for lignin catabolism in white-rot fungi. Proc. Natl Acad. Sci. USA 118, e2017381118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seibert, C. M. & Raushel, F. M. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44, 6383–6391 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Goto, M. et al. Crystal structures of nonoxidative zinc-dependent 2,6-dihydroxybenzoate (gamma-resorcylate) decarboxylase from Rhizobium sp. strain MTP-10005. J. Biol. Chem. 281, 34365–34373 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Vladimirova, A. et al. Substrate distortion and the catalytic reaction mechanism of 5-carboxyvanillate decarboxylase. J. Am. Chem. Soc. 138, 826–836 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Sheng, X. et al. Mechanism and structure of gamma-resorcylate decarboxylase. Biochemistry 57, 3167–3175 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sheng, X. et al. A combined experimental-theoretical study of the LigW-catalyzed decarboxylation of 5-carboxyvanillate in the metabolic pathway for lignin degradation. ACS Catal. 7, 4968–4974 (2017). The empirical determination of the identity of the CO2 as the reaction by product and density functional theory calculation that describes the molecular mechanism of the AHS-type decarboxylase.

    CAS 

    Google Scholar 

  • Peng, X. et al. A second 5-carboxyvanillate decarboxylase gene, ligW2, is important for lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 71, 5014–5021 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasai, D. et al. γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1. Appl. Environ. Microbiol. 81, 7656–7665 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spence, E. M. et al. The hydroxyquinol degradation pathway in Rhodococcus jostii RHA1 and Agrobacterium species is an alternative pathway for degradation of protocatechuic acid and lignin fragments. Appl. Environ. Microbiol. 86, e01561–e01520 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meier, A. K. et al. Agdc1p—a gallic acid decarboxylase involved in the degradation of tannic acid in the yeast Blastobotrys (Arxula) adeninivorans. Front. Microbiol. 8, 1777 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brückner, C., Oreb, M., Kunze, G., Boles, E. & Tripp, J. An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Res. 18, foy017 (2018).

  • Zeug, M. et al. Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists. Sci. Rep. 11, 3056 (2021). A novel NTF2-type cofactorless gallate/protocatechuate decarboxylase from fungi.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, M. D. et al. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature 522, 502–506 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lupa, B., Lyon, D., Gibbs, M. D., Reeves, R. A. & Wiegel, J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86, 342–351 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Lupa, B., Lyon, D., Shaw, L. N., Sieprawska-Lupa, M. & Wiegel, J. Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis. Can. J. Microbiol. 54, 75–81 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Payne, K. A. et al. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 522, 497–501 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. H. et al. Biosynthesis and activity of prenylated FMN cofactors. Cell Chem. Biol. 25, 560–570 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Payer, S. E. et al. Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase. Angew. Chem. Int. Ed. 56, 13893–13897 (2017). Structural and catalytic properties of the UbiD-type decarboxylase.

    CAS 

    Google Scholar 

  • Grant, D. J. & Patel, J. C. The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie Van Leeuwenhoek 35, 325–343 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • Matsui, T., Yoshida, T., Hayashi, T. & Nagasawa, T. Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch. Microbiol. 186, 21–29 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Holesova, Z. et al. Gentisate and 3-oxoadipate pathways in the yeast Candida parapsilosis: identification and functional analysis of the genes coding for 3-hydroxybenzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase. Microbiology 157, 2152–2163 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Katagiri, M., Takemori, S., Suzuki, K. & Yasuda, H. Mechanism of the salicylate hydroxylase reaction. J. Biol. Chem. 241, 5675–5677 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • Reiner, A. M. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD+) oxidoreductase (decarboxylating). J. Biol. Chem. 247, 4960–4965 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • Neidle, E. et al. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204, 113–120 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Reiner, A. M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J. Bacteriol. 108, 89–94 (1971).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, O. et al. Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem. Biophys. Res. Commun. 327, 656–662 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Becker, J. & Wittmann, C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials and health-care products. Angew. Chem. Int. Ed. 54, 3328–3350 (2015).

    CAS 

    Google Scholar 

  • Kuatsjah, E. et al. Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metab. Eng. 70, 31–42 (2021).

  • Zobel, S., Kuepper, J., Ebert, B., Wierckx, N. & Blank, L. M. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng. Life Sci. 17, 47–57 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lubbers, R. J. M. et al. Discovery of novel p-hydroxybenzoate-m-hydroxylase, protocatechuate 3,4 ring-cleavage dioxygenase, and hydroxyquinol 1,2 ring-cleavage dioxygenase from the filamentous fungus Aspergillus niger. ACS Sustain. Chem. Eng. 7, 19081–19089 (2019).

    CAS 

    Google Scholar 

  • Wang, M., Chen, B., Fang, Y. & Tan, T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol. Adv. 35, 1032–1039 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Bell, S. G., Tan, A. B., Johnson, E. O. & Wong, L.-L. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol. Biosyst. 6, 206–214 (2009).

    PubMed 

    Google Scholar 

  • Khatri, Y., Schifrin, A. & Bernhardt, R. Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial CYP 260A1. FEBS Lett. 591, 1126–1140 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • To, P., Whitehead, B., Tarbox, H. E. & Fried, S. D. Nonrefoldability is pervasive across the E. coli proteome. J. Am. Chem. Soc. 143, 11435–11448 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Z. et al. Development of engineered ferredoxin reductase systems for the efficient hydroxylation of steroidal substrates. ACS Sustain. Chem. Eng. 8, 16720–16730 (2020).

    CAS 

    Google Scholar 

  • Zhang, W. et al. New reactions and products resulting from alternative interactions between the p450 enzyme and redox partners. J. Am. Chem. Soc. 136, 3640–3646 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, N. H., Djoko, K. Y., Veyrier, F. J. & McEwan, A. G. Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7, 257 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L. T., Tran, M. H. & Lee, E. Y. Co-upgrading of ethanol-assisted depolymerized lignin: a new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresour. Technol. 338, 125563 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019). A comprehensive review of adaptive laboratory evolution principles, applications and potential to optimize relevant features of industrial microbial chassis.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohamed, E. T. et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab. Eng. Commun. 11, e00143 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvachúa, D. et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. USA 117, 9302–9310 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alves, N. J. et al. Bacterial nanobioreactors—directing enzyme packaging into bacterial outer membrane vesicles. ACS Appl. Mater. Interfaces 7, 24963–24972 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Elmore, J. R. et al. Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12, 2261 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foo, J. L., Ching, C. B., Chang, M. W. & Leong, S. S. J. The imminent role of protein engineering in synthetic biology. Biotechnol. Adv. 30, 541–549 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Maxel, S. et al. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site. ACS Catal. 10, 6969–6974 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jha, R. K. et al. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab. Eng. Commun. 6, 33–38 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Vermaas, J. V. et al. Passive membrane transport of lignin-related compounds. Proc. Natl Acad. Sci. USA 116, 23117 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wada, A. et al. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab. Eng. 64, 167–179 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Entsch, B., Cole, L. J. & Ballou, D. P. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch. Biochem. Biophys. 433, 297–311 (2005). A summary of the p-hydroxybenzoate hydroxylase catalytic cycle.

    CAS 
    PubMed 

    Google Scholar 

  • van Berkel, W. J. H., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006).

    PubMed 

    Google Scholar 

  • Leys, D. Flavin metamorphosis: cofactor transformation through prenylation. Curr. Opin. Chem. Biol. 47, 117–125 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Source link