Preloader

Control of the molecular permeability of polysaccharide composite films utilizing a molecular imprinting approach

  • 1.

    Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.

    CAS 

    Google Scholar 

  • 2.

    Iijima K, Hashizume M. Application of polysaccharides as structural materials. Trends Glycosci Glycotechnol. 2015;27:67–79.

    Google Scholar 

  • 3.

    Sivasankarapillai VS, Das SS, Sabir F, Sundaramahalingam MA, Colmenares JC, Prasannakumar S, et al. Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Mater Today Chem. 2021;19:100382.

    CAS 

    Google Scholar 

  • 4.

    Khan MUA, Razak SIA, Arjan WSA, Nazir S, Anand TJS, Mehboob H, et al. Recent advances in biopolymeric composite materials for tissue engineering and regenerative medicines: a Review. Molecules. 2021;26:619.

    CAS 

    Google Scholar 

  • 5.

    Atanase LI. Micellar drug delivery systems based on natural biopolymers. Polymers. 2021;13:477.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Kokabi M, Sirousazar M, Hassan ZM. PVA–clay nanocomposite hydrogels for wound dressing. Eur Polm J. 2007;43:773–81.

    CAS 

    Google Scholar 

  • 7.

    Fwu-Long M, Shin-Shing S, Yu-Bey W, Sung-Tao L, Jen-Yeu S, Rong-Nan H. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22:165–73.

    Google Scholar 

  • 8.

    Ulubayram K, Cakar AN, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomaterials. 2001;22:1345–56.

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25:2699.

    CAS 
    PubMed Central 

    Google Scholar 

  • 10.

    Shuai L, Xin L, Yanhan R, Penghui W, Yajie P, Rong Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-Polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Interfaces. 2020;12:27876–27888.

    Google Scholar 

  • 11.

    Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 2009;5:969–82.

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Water JJ, Schack MM, Velazquez-Campoy A, Maltesen MJ, van de Weert M, Jorgensen L. Complex coacervates of hyaluronic acid and lysozyme: Effect on protein structure and physical stability. Eur J Pharm Sci. 2014;88:325–31.

    CAS 

    Google Scholar 

  • 13.

    Coimbra P, Alves P, Valente TAM, Santos R, Correia IJ, Ferreira P. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. J Biol Macromol 2011;49:573–9.

    CAS 

    Google Scholar 

  • 14.

    Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Sci. 2011;78:10–18.

    CAS 

    Google Scholar 

  • 15.

    Lalevée G, Sudre G, Montembault A, Meadows J, Malaise S, Crépet A, et al. Polyelectrolyte complexes via desalting mixtures of hyaluronic acidand chitosan—Physicochemical study and structural analysis. Carbohydr Polym 2016;154:86–95.

    PubMed 

    Google Scholar 

  • 16.

    Wuff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemate. J Angew Chem Int Ed. 1972;11:341–5.

    Google Scholar 

  • 17.

    Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem. 1981;182:687–92.

    CAS 

    Google Scholar 

  • 18.

    Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–7.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Lingxin C, Xiaoyan W, Wenhui L, Xiaqing W, Jinhua L. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.

    Google Scholar 

  • 20.

    Shea KJ, Spivak DA, Sellergren B. Polymer complements to nucleotide bases. selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc. 1993;115:3368–9.

    CAS 

    Google Scholar 

  • 21.

    Hoshino Y, Kodame T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 1993;115:3368–9.

    Google Scholar 

  • 22.

    Hoshino Y, Kodame T, Urakami T, Kanazawa H, Kodama T, Oku N, et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2010;132:6644–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Takeuchi T, Sunayama H. Beyond natural antibodies–a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem Commun. 2018;54:6243–51.

    CAS 

    Google Scholar 

  • 24.

    Rachel AH, Elena P, Thomas B, Geraint M, Nicholas T. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst. 2020;145:4716–36.

    Google Scholar 

  • 25.

    Tabkrich K, Angelica C, Loc TN. Epitope-imprinted polymers: applications in protein recognition and separation. RSC Adv. 2021;11:11403–14.

    Google Scholar 

  • 26.

    Myriam DÁ, Antonio ME. Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications. Biosensors. 2021;11:79.

    Google Scholar 

  • 27.

    Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci. 2017;40:314–55.

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    EL-Sharif HF, Hawkins DM, Stevenson D, Reddy SM. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs). Phys Chem Chem Phys. 2014;16:15483–9.

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Armutcu C, Ozgür E, Çorman ME, Uzun L. Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin. Colloids Surf B: Biointerfaces. 2021;197:111435.

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Perçin I, Idil N, Denizli A. Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochem. 2019;80:181–9.

    Google Scholar 

  • 31.

    Lee SW, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir. 1998;14:2587–2563.

    Google Scholar 

  • 32.

    Hashizume M, Kunitake T. Preparation of self-supporting ultrathin films of titania by spin coating. Langmuir. 2003;19:10172–8.

    CAS 

    Google Scholar 

  • 33.

    Lee SW, Ahmed S, Wang T, Park Y, Matsuzaki S, Tatsumi S. et al. Label-free creatinine optical sensing using molecularly imprinted titanium dioxide-polycarboxylic acid hybrid Thin Films: a preliminary study for urine sample analysis. Chemosensors. 2021;9:185

    CAS 

    Google Scholar 

  • 34.

    Hashizume M, Kobayashi H, Ohashi M. Preparation of free–standing films of natural polysaccharides using hot press technique and their surface functionalization with biomimetic apatite. Colloids. Surf B. 2011;88:534–8.

    CAS 

    Google Scholar 

  • 35.

    Hashizume M, Ohashi M, Kobayashi H, Tsuji Y, Iijima K. Free-standing polysaccharide composite films: improved preparation and physical properties. Colloids Surf A: Physicochem Eng. 2015;483:18–24.

    CAS 

    Google Scholar 

  • 36.

    Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, et al. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B: Biointerfaces. 2017;160:228–37.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Iijima K, Kimura T, Sato R, Takahashi T, Hashizume M. Kinetic analysis of molecular permeabilities of free-standing polysaccharide composite films. Macromol Chem Phys. 2017;218:1600391.

    Google Scholar 

  • 38.

    Yataka Y, Suzuki A, Iijima K, Hashizume M. Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polym J. 2020;52:645–53.

    CAS 

    Google Scholar 

  • 39.

    Decher GF. Nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.

    CAS 

    Google Scholar 

  • 40.

    Li Y, Wang X, Sun J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev. 2012;41:5998–6009.

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Hashizume M, Murata Y, Iijima K, Shibata T. Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J. 2016;48:545–50.

    CAS 

    Google Scholar 

  • 42.

    Chen Y, Zhang Y, Feng X. An improved approach for determining permeability and diffusivity relevantto controlled release. Chem Eng Sci. 2010;65:5921–5.

    CAS 

    Google Scholar 

  • 43.

    Hoshino Y, Jibiki T, Nakamoto M, Miura Y. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions. ACS Appl Mater Interfaces. 2018;10:31096–105.

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Yabushita M, Kobayashi H, Hasegawa J, Hara K, Fukuoka A. Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem. 2014;7:1443–50.

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B. 2018;5:9204–10.

    Google Scholar 

  • 46.

    Honda R, Gyobu T, Shimahara H, Miura Y, Hoshino Y. Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH. ACS Appl Polym Mater. 2020;3:3827–34.

    CAS 

    Google Scholar 

  • 47.

    Henderson L. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol. 1908;21:173–9.

    CAS 

    Google Scholar 

  • 48.

    Hasselbalch K. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z. 1917;78:112–44.

    Google Scholar 

  • 49.

    Lee SB, Lee YM, Song KW, Park MH. Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. J Appl Polym Sci. 2003;90:925–32.

    CAS 

    Google Scholar 

  • Source link