Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.
Google Scholar
Iijima K, Hashizume M. Application of polysaccharides as structural materials. Trends Glycosci Glycotechnol. 2015;27:67–79.
Sivasankarapillai VS, Das SS, Sabir F, Sundaramahalingam MA, Colmenares JC, Prasannakumar S, et al. Progress in natural polymer engineered biomaterials for transdermal drug delivery systems. Mater Today Chem. 2021;19:100382.
Google Scholar
Khan MUA, Razak SIA, Arjan WSA, Nazir S, Anand TJS, Mehboob H, et al. Recent advances in biopolymeric composite materials for tissue engineering and regenerative medicines: a Review. Molecules. 2021;26:619.
Google Scholar
Atanase LI. Micellar drug delivery systems based on natural biopolymers. Polymers. 2021;13:477.
Google Scholar
Kokabi M, Sirousazar M, Hassan ZM. PVA–clay nanocomposite hydrogels for wound dressing. Eur Polm J. 2007;43:773–81.
Google Scholar
Fwu-Long M, Shin-Shing S, Yu-Bey W, Sung-Tao L, Jen-Yeu S, Rong-Nan H. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials. 2001;22:165–73.
Ulubayram K, Cakar AN, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomaterials. 2001;22:1345–56.
Google Scholar
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25:2699.
Google Scholar
Shuai L, Xin L, Yanhan R, Penghui W, Yajie P, Rong Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-Polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Interfaces. 2020;12:27876–27888.
Hori Y, Winans AM, Irvine DJ. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 2009;5:969–82.
Google Scholar
Water JJ, Schack MM, Velazquez-Campoy A, Maltesen MJ, van de Weert M, Jorgensen L. Complex coacervates of hyaluronic acid and lysozyme: Effect on protein structure and physical stability. Eur J Pharm Sci. 2014;88:325–31.
Google Scholar
Coimbra P, Alves P, Valente TAM, Santos R, Correia IJ, Ferreira P. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. J Biol Macromol 2011;49:573–9.
Google Scholar
Delair T. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Sci. 2011;78:10–18.
Google Scholar
Lalevée G, Sudre G, Montembault A, Meadows J, Malaise S, Crépet A, et al. Polyelectrolyte complexes via desalting mixtures of hyaluronic acidand chitosan—Physicochemical study and structural analysis. Carbohydr Polym 2016;154:86–95.
Google Scholar
Wuff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemate. J Angew Chem Int Ed. 1972;11:341–5.
Arshady R, Mosbach K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol Chem. 1981;182:687–92.
Google Scholar
Vlatakis G, Andersson LI, Müller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–7.
Google Scholar
Lingxin C, Xiaoyan W, Wenhui L, Xiaqing W, Jinhua L. Molecular imprinting: perspectives and applications. Chem Soc Rev. 2016;45:2137–211.
Shea KJ, Spivak DA, Sellergren B. Polymer complements to nucleotide bases. selective binding of adenine derivatives to imprinted polymers. J Am Chem Soc. 1993;115:3368–9.
Google Scholar
Hoshino Y, Kodame T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 1993;115:3368–9.
Hoshino Y, Kodame T, Urakami T, Kanazawa H, Kodama T, Oku N, et al. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc. 2010;132:6644–5.
Google Scholar
Takeuchi T, Sunayama H. Beyond natural antibodies–a new generation of synthetic antibodies created by post-imprinting modification of molecularly imprinted polymers. Chem Commun. 2018;54:6243–51.
Google Scholar
Rachel AH, Elena P, Thomas B, Geraint M, Nicholas T. Application of molecularly imprinted polymers in the anti-doping field: sample purification and compound analysis. Analyst. 2020;145:4716–36.
Tabkrich K, Angelica C, Loc TN. Epitope-imprinted polymers: applications in protein recognition and separation. RSC Adv. 2021;11:11403–14.
Myriam DÁ, Antonio ME. Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications. Biosensors. 2021;11:79.
Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci. 2017;40:314–55.
Google Scholar
EL-Sharif HF, Hawkins DM, Stevenson D, Reddy SM. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs). Phys Chem Chem Phys. 2014;16:15483–9.
Google Scholar
Armutcu C, Ozgür E, Çorman ME, Uzun L. Interface imprinted polymers with well-oriented recognition sites for selective purification of hemoglobin. Colloids Surf B: Biointerfaces. 2021;197:111435.
Google Scholar
Perçin I, Idil N, Denizli A. Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochem. 2019;80:181–9.
Lee SW, Ichinose I, Kunitake T. Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process. Langmuir. 1998;14:2587–2563.
Hashizume M, Kunitake T. Preparation of self-supporting ultrathin films of titania by spin coating. Langmuir. 2003;19:10172–8.
Google Scholar
Lee SW, Ahmed S, Wang T, Park Y, Matsuzaki S, Tatsumi S. et al. Label-free creatinine optical sensing using molecularly imprinted titanium dioxide-polycarboxylic acid hybrid Thin Films: a preliminary study for urine sample analysis. Chemosensors. 2021;9:185
Google Scholar
Hashizume M, Kobayashi H, Ohashi M. Preparation of free–standing films of natural polysaccharides using hot press technique and their surface functionalization with biomimetic apatite. Colloids. Surf B. 2011;88:534–8.
Google Scholar
Hashizume M, Ohashi M, Kobayashi H, Tsuji Y, Iijima K. Free-standing polysaccharide composite films: improved preparation and physical properties. Colloids Surf A: Physicochem Eng. 2015;483:18–24.
Google Scholar
Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, et al. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B: Biointerfaces. 2017;160:228–37.
Google Scholar
Iijima K, Kimura T, Sato R, Takahashi T, Hashizume M. Kinetic analysis of molecular permeabilities of free-standing polysaccharide composite films. Macromol Chem Phys. 2017;218:1600391.
Yataka Y, Suzuki A, Iijima K, Hashizume M. Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polym J. 2020;52:645–53.
Google Scholar
Decher GF. Nanoassemblies: toward layered polymeric multicomposites. Science. 1997;277:1232–7.
Google Scholar
Li Y, Wang X, Sun J. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev. 2012;41:5998–6009.
Google Scholar
Hashizume M, Murata Y, Iijima K, Shibata T. Drug loading and release behaviors of freestanding polysaccharide composite films. Polym J. 2016;48:545–50.
Google Scholar
Chen Y, Zhang Y, Feng X. An improved approach for determining permeability and diffusivity relevantto controlled release. Chem Eng Sci. 2010;65:5921–5.
Google Scholar
Hoshino Y, Jibiki T, Nakamoto M, Miura Y. Reversible pKa modulation of carboxylic acids in temperature-responsive nanoparticles through imprinted electrostatic interactions. ACS Appl Mater Interfaces. 2018;10:31096–105.
Google Scholar
Yabushita M, Kobayashi H, Hasegawa J, Hara K, Fukuoka A. Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem. 2014;7:1443–50.
Google Scholar
Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B. 2018;5:9204–10.
Honda R, Gyobu T, Shimahara H, Miura Y, Hoshino Y. Electrostatic interactions between acid-/base-containing polymer nanoparticles and proteins: impact of polymerization pH. ACS Appl Polym Mater. 2020;3:3827–34.
Google Scholar
Henderson L. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol. 1908;21:173–9.
Google Scholar
Hasselbalch K. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochem Z. 1917;78:112–44.
Lee SB, Lee YM, Song KW, Park MH. Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behaviors. J Appl Polym Sci. 2003;90:925–32.
Google Scholar

