Preloader

Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern

  • 1.

    Munaz, A. et al. Three-dimensional printing of biological matters. J. Sci. Adv. Mater. Dev. 1, 1–17 (2016).

    ADS 

    Google Scholar 

  • 2.

    Sears, N. A., Seshadri, D. R., Dhavalikar, P. S. & Cosgriff-Hernandez, E. A review of three-dimensional printing in tissue engineering. Tissue Eng. B Rev. 22, 298–310 (2016).

    CAS 

    Google Scholar 

  • 3.

    Shafiee, A. & Atala, A. Printing technologies for medical applications. Trends Mol. Med. 22, 254–265 (2016).

    PubMed 

    Google Scholar 

  • 4.

    Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Ji, S. & Guvendiren, M. Complex 3D bioprinting methods. APL Bioeng. 5, 011508 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Long, X., Olszewski, M., Huang, W. & Kletzel, M. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev. 14, 65–69 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Wang, T., Tio, M., Lee, W., Beerheide, W. & Udolph, G. Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by pka. Biochem. Biophys. Res. Commun. 357, 1021–1027 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Gudas, L. J. & Wagner, J. A. Retinoids regulate stem cell differentiation. J. Cell. Physiol. 226, 322–330 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Kumar, B. M. et al. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res. Vet. Sci. 93, 749–757 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6, 997–1003 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Martinez, E., Engel, E., Planell, J. A. & Samitier, J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 191, 126–135 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 107, 4872–4877 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Yim, E. K. F., Pang, S. W. & Leong, K. W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313, 1820–1829 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Lee, M. R. et al. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31, 4360–4366 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Pan, F. et al. Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials 34, 8131–8139 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Li, W., Zhu, B., Strakova, Z. & Wang, R. Two-way regulation between cells and aligned collagen fibrils: Local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells. Biochem. Biophys. Res. Commun. 450, 1377–1382 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Peng, R., Yao, X. & Ding, J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 32, 8048–8057 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Song, W., Kawazoe, N. & Chen, G. Dependence of spreading and differentiation of mesenchymal stem cells on micropatterned surface area. J. Nanomater. 2011, 265251 (2011).

    Google Scholar 

  • 19.

    Song, W., Wang, X., Lu, H., Kawazoe, N. & Chen, G. Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter 8, 8429–8437 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Li, H. et al. Micropatterning extracellular matrix proteins on electrospun fibrous substrate promote human mesenchymal stem cell differentiation toward neurogenic lineage. ACS Appl. Mater. Interfaces 8, 563–573 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    de Freitas, L. F. & Hamblin, M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 22, 348–364 (2016).

    ADS 

    Google Scholar 

  • 23.

    Karu, T. I., Pyatibrat, L. V. & Afanasyeva, N. I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers. Surg. Med. 36, 307–314 (2005).

    PubMed 

    Google Scholar 

  • 24.

    Chen, A. C. et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PloS One 6, e22453 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Kim, H. K. et al. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med. Sci. 24, 214–222 (2009).

    PubMed 

    Google Scholar 

  • 26.

    Peng, F., Wu, H., Zheng, Y., Xu, X. & Yu, J. The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med. Sci. 27, 645–653 (2012).

    PubMed 

    Google Scholar 

  • 27.

    Soleimani, M. et al. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—An in vitro study. Lasers Med. Sci. 27, 423–430 (2012).

    PubMed 

    Google Scholar 

  • 28.

    Wang, Y., Huang, Y.-Y., Wang, Y., Lyu, P. & Hamblin, M. R. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci. Rep. 6, 33719 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Yang, D., Yi, W., Wang, E. & Wang, M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci. Rep. 6, 37370 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Chen, H. et al. Lasers Med. Sci. 34, 667–675 (2019).

    PubMed 

    Google Scholar 

  • 31.

    Castilho-Fernandes, A. et al. Adipogenic differentiation of murine bone marrow mesenchymal stem cells induced by visible light via photo-induced biomodulation. Photodiagn. Photodyn. Ther. 25, 119–127 (2019).

    CAS 

    Google Scholar 

  • 32.

    Ortel, B., Shea, C. R. & Calzavara-Pinton, P. Molecular mechanisms of photodynamic therapy. Front. Biosci. 14, 4157–4172 (2009).

    CAS 

    Google Scholar 

  • 33.

    Gollnick, S., Vaughan, L. & Henderson, B. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 62, 1604–1608 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Korbelik, M. & Sun, J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol. Immunother. 55, 900–909 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Korbelik, M. Cancer vaccines generated by photodynamic therapy. Photochem. Photobiol. Sci. 10, 664–669 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Alves, E. et al. An insight on bacterial cellular targets of photodynamic inactivation. Fut. Med. Chem. 6, 141–164 (2014).

    CAS 

    Google Scholar 

  • 37.

    Widowati, W. et al. Conditioned medium from normoxia (WJMSCs-norCM) and hypoxia-treated WJMSCs (WJMSCs-hypoCM) in inhibiting cancer cell proliferation. Biomark. Genome Med. 7, 8–17 (2015).

    CAS 

    Google Scholar 

  • 38.

    Amable, P. R., Teixeira, M. V. T., Carias, R. B. V., Granjeiro, J. M. & Borojevic, R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biol. 15, 1–10 (2014).

    Google Scholar 

  • 39.

    Cardoso, T. C. et al. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton’s jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res. 367, 243–256 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Peng, J. et al. Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res. Bull. 84, 235–243 (2011).

    PubMed 

    Google Scholar 

  • 41.

    Bharti, D. et al. Differentiation potential of different regions-derived same donor human Wharton’s jelly mesenchymal stem cells into functional smooth muscle-like cells. Cell Tissue Res. 377, 229–243 (2019).

    PubMed 

    Google Scholar 

  • 42.

    Duan, W. et al. Novel insights into neun: from neuronal marker to splicing regulator. Mol. Neurobiol. 53, 1637–1647 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Foudah, D. et al. Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell. Mol. Biol. Lett. 18, 163–186 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Mullen, R. J., Buck, C. R. & Smith, A. M. Neun, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Aldridge, A. et al. Assay validation for the assessment of adipogenesis of multipotential stromal cells—a direct comparison of four different methods. Cytotherapy 15, 89–101 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Sundelacruz, S., Levin, M. & Kaplan, D. L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3, e3737 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Sun, S., Liu, Y., Lipsky, S. & Cho, M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J. 21, 1472–1480 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Vacca, R. et al. The irradiation of hepatocytes with He-Ne laser causes an increase of cytosolic free calcium concentration and an increase of cell membrane potential, correlated with it, both increases taking place in an oscillatory manner. Biochem. Mol. Biol. Int. 43, 1005–1014 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Alexandratou, E., Yova, D., Handris, P., Kletsas, D. & Loukas, S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem. Photobiol. Sci. 1, 547–552 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Lavi, R. et al. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J. Biol. Chem. 278, 40917–40922 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Kim, T.-J. et al. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J. Cell. Physiol. 218, 285–293 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Granville, D. et al. Bcl-2 increases emptying of endoplasmic reticulum Ca2+ stores during photodynamic therapy-induced apoptosis. Cell Calcium 30, 343–350 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Berridge, M., Lipp, P. & Bootman, M. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS 

    Google Scholar 

  • 54.

    Titushkin, I., Sun, S., Shin, J. & Cho, M. Physicochemical control of adult stem cell differentiation: Shedding light on potential molecular mechanisms. J. Biomed. Biotechnol. 2010, 743476 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Sundelacruz, S., Moody, A. T., Levin, M. & Kaplan, D. L. Membrane potential depolarization alters calcium flux and phosphate signaling during osteogenic differentiation of human mesenchymal stem cells. Bioelectricity 1, 56–66 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Pchelintseva, E. & Djamgoz, M. B. A. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels. J. Cell. Physiol. 233, 3755–3768 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Chen, L., He, D.-M. & Zhang, Y. The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro. Cell. Mol. Biol. Lett. 14, 528–536 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link