Preloader

Contrasting assembly mechanisms and drivers of soil rare and abundant bacterial communities in 22-year continuous and non-continuous cropping systems

  • Kong, X. B. China must protect high-quality arable land. Nature 506, 7–7 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, C. M. et al. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production. Geoderma 325, 49–58 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Bai, T. T. et al. Temporal variations of Fusarium oxysporum f. sp. cubense tropical race 4 population in a heavily infected banana field in Southwest China. Acta Agric. Scand. 69, 641–648 (2019).

    CAS 

    Google Scholar 

  • Niu, J. J. et al. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate. J. Basic Microb. 57, 3–11 (2017).

    CAS 

    Google Scholar 

  • Gao, Z. Y. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 10, 2269 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cottrell, M. T. & Kirchman, D. L. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol. Oceanogr. 48, 168–178 (2003).

    ADS 

    Google Scholar 

  • Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Shi, Y. et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome 6, 409 (2018).

    Google Scholar 

  • Gibbons, S. M. et al. Evidence for a persistent microbial seed bank throughout the global ocean. Proc. Natl. Acad. Sci. USA 110, 4651–4655 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA 107, 5881–5886 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Reid, A., Buckley, M. & Mcfall, M. The Rare Biosphere: A report from the American Academy of Microbiology (American Academy of Microbiology, 2011).

    Google Scholar 

  • Xue, Y. Y. et al. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 12, 2263–2277 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziegler, M., Eguiluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME J. 12, 161–172 (2018).

    PubMed 

    Google Scholar 

  • Jiao, S., Chen, W. M. & Wei, G. H. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol. Ecol. 26, 5305–5317 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jiao, S., Xu, Y. Q., Zhang, J. & Lu, Y. H. Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7, 1 (2019).

    Google Scholar 

  • Jiao, S. et al. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants. Environ. Pollut. 225, 497–505 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, J. Z. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci. USA 111, E836–E845 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. USA 112, E1326–E1332 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, Y. Z. et al. Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Mol. Ecol. 27, 5238–5251 (2018).

    PubMed 

    Google Scholar 

  • Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. Y. et al. Distinct methanotrophic communities exist in habitats with different soil water contents. Soil. Biol. Biochem. 132, 143–152 (2019).

    CAS 

    Google Scholar 

  • Wu, W. X., Logares, R., Huang, B. Q. & Hsieh, C. H. Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ. Microbiol. 19, 287–300 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Continuous-cropping tobacco caused variance of chemical properties and structure of bacterial network in soils. Land. Degrad. Dev. 29, 4106–4120 (2018).

    Google Scholar 

  • Liu, X. B. et al. Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northeast China. Field Crop. Res. 138, 52–56 (2012).

    ADS 

    Google Scholar 

  • Jiang, Y. J. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).

    CAS 

    Google Scholar 

  • Liu, J. J. et al. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).

    Google Scholar 

  • McDowell, R. W. et al. The effect of soil acidity on potentially mobile phosphorus in a grassland soil. J. Agric. Sci. 139, 27–36 (2002).

    CAS 

    Google Scholar 

  • Chen, D. M., Lan, Z. C., Bai, X., Grace, J. B. & Bai, Y. F. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. J. Ecol. 101, 1322–1334 (2013).

    CAS 

    Google Scholar 

  • Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008–1010 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, R. et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 7, 472 (2017).

    ADS 

    Google Scholar 

  • Hemkemeyer, M., Dohrmann, A., Christensen, B. & Tebbe, C. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. 9, 149 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, L. L. et al. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. 12, 139 (2017).

    Google Scholar 

  • Yu, W. T. et al. Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization. CATENA 107, 89–95 (2013).

    CAS 

    Google Scholar 

  • Jiao, S. & Lu, Y. H. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob. Chang. Biol. 26, 4506–4520 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Feng, Y. Z. et al. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biol. Biochem. 74, 193–200 (2014).

    CAS 

    Google Scholar 

  • Zarafshar, M. et al. Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests?. Appl. Soil Ecol. 151, 103536 (2020).

    Google Scholar 

  • Venter, Z. S., Jacobs, K. & Hawkins, H. J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 59, 215–223 (2016).

    Google Scholar 

  • Jiao, S., Wang, J. M., Wei, G. H., Chen, W. M. & Lu, Y. H. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere 235, 248–259 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11, 853–862 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. L. & van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).

    PubMed 

    Google Scholar 

  • Tyler, H. L. Bacterial community composition under long-term reduced tillage and no till management. J. Appl. Microbiol. 126, 1797–1807 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Arunachalam Palaniyandi, S., Yang, S. H., Zhang, L. & Suh, J.-W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636 (2013).

    Google Scholar 

  • Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136942 (2015).

    Google Scholar 

  • Tang, H. et al. Prokaryotic diversity in continuous cropping and rotational cropping soybean soil. FEMS Microbiol. Lett. 298, 267–273 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Aislabie, J., Deslippe, J. & Dymond, J. Soil Microbes and their Contribution to Soil Services. Ecosystem Services in New Zealand: Conditions and Trends 143–161 (Manaaki Whenua Press, 2013).

    Google Scholar 

  • Ho, A., Di Lonardo, D. P. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93, 006 (2017).

    Google Scholar 

  • Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed 

    Google Scholar 

  • Liu, L. M., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 9, 2068–2077 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mo, Y. Y. et al. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 12, 2198–2210 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. Y. et al. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann. Microbiol. 69, 1461–1473 (2019).

    CAS 

    Google Scholar 

  • Morrison-Whittle, P. & Goddard, M. R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 9, 2003–2011 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stegen, J. C., Lin, X. J., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, D. et al. Survey of bacterial phylogenetic diversity during the glacier melting season in an arctic fjord. Microb. Ecol. 81, 579–591 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, W. et al. Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer. Soil Biol. Biochem. 156, 10822 (2021).

    Google Scholar 

  • Du, S. C. et al. Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Appl. Environ. Microb. 86, 13 (2020).

    Google Scholar 

  • Wang, J. J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. X. et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Till. Res. 197, 104503 (2020).

    Google Scholar 

  • Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).

    PubMed 

    Google Scholar 

  • Karimi, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9, 1 (2019).

    Google Scholar 

  • Wang, F., Zhou, J. & Sun, B. Structure of functional ecological networks of soil microbial communities for nitrogen transformations and their response to cropping in major soils in eastern China. Chin. Sci. Bull. 59, 387 (2014).

    Google Scholar 

  • Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107868 (2020).

    Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 75, 5111–5120 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).

    PubMed 

    Google Scholar 

  • Bao, S. D. Soil and Agricultural Chemistry Analysis 355–356 (Agriculture Publication, 2000).

    Google Scholar 

  • Guo, Y. Q. et al. Soil microbial diversity during 30 years of grassland restoration on the Loess Plateau, China: Tight linkages with plant diversity. Land Degrad. Dev. 30, 1172–1182 (2019).

    Google Scholar 

  • Jiang, Y. L., Song, H. F., Lei, Y. B., Korpelainen, H. & Li, C. Y. Distinct co-occurrence patterns and driving forces of rare and abundant bacterial subcommunities following a glacial retreat in the eastern Tibetan Plateau. Biol. Fert. Soils 55, 351–364 (2019).

    Google Scholar 

  • Jiang, H., Huang, L., Yang, J. & Wu, G. A microbial analysis primer for biogeochemists. Environ. Geochem. 2, 599–609 (2018).

    Google Scholar 

  • Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Alonso-Saez, L., Diaz-Perez, L. & Moran, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780 (2015).

    PubMed 

    Google Scholar 

  • Brown, S. P. & Jumpponen, A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23, 481–497 (2014).

    PubMed 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. J. et al. Interaction and assembly processes of abundant and rare microbial communities during a diatom bloom process. Environ. Microbiol. 22, 1707–1719 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. Bioinformatics 13, 113 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, J. Z., Deng, Y., Luo, F., He, Z. L. & Yang, Y. F. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, 4 (2011).

    Google Scholar 

  • Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).

    PubMed 

    Google Scholar 

  • Source link