Preloader

Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors

  • 1.

    Kempf, H. & Zweigerdt, R. Scalable cardiac differentiation of pluripotent stem cells using specific growth factors and small molecules. Adv. Biochem. Eng. Biotechnol. 163, 39–69 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Knorr, D. A. et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl. Med. 2, 274–283 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Ito, Y. et al. Turbulence activates platelet biogenesis to enable clinical scale ex vivo production. Cell 174, 636–648.e618 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Hetzel, M., Ackermann, M. & Lachmann, N. Beyond “big eaters”: the versatile role of alveolar macrophages in health and disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22073308 (2021).

  • 6.

    Singanayagam, A. & Triantafyllou, E. Macrophages in chronic liver failure: diversity, plasticity and therapeutic targeting. Front. Immunol. 12, 661182 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Haake, K., Ackermann, M. & Lachmann, N. Concise review: towards the clinical translation of induced pluripotent stem cell-derived blood cells-ready for take-off. Stem Cells Transl. Med. 8, 332–339 (2019).

    PubMed 

    Google Scholar 

  • 9.

    Lee, C. Z. W., Kozaki, T. & Ginhoux, F. Studying tissue macrophages in vitro: are iPSC-derived cells the answer? Nat. Rev. Immunol. 18, 716–725 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Ackermann, M., Dragon, A. C. & Lachmann, N. The immune-modulatory properties of iPSC-derived antigen-presenting cells. Transfus. Med. Hemother. 47, 444–453 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Happle, C. et al. Pulmonary transplantation of human induced pluripotent stem cell-derived macrophages ameliorates pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 198, 350–360 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun. 11, 1577 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Ackermann, M. et al. Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nat. Commun. 9, 5088 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Karlsson, K. R. et al. Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp. Hematol. 36, 1167–1175 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    van Wilgenburg, B., Browne, C., Vowles, J. & Cowley, S. A. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PLoS One 8, e71098 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Lachmann, N. et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Rep. 4, 282–296 (2015).

    CAS 

    Google Scholar 

  • 17.

    Ackermann, M. et al. A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica 106, 1354–1367 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Dreyer, A. K. et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 69, 191–200 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Lachmann, N. et al. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am. J. Respir. Crit. Care Med. 189, 167–182 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Haake, K. et al. Patient iPSC-derived macrophages to study inborn errors of the IFN-γ responsive pathway. Cells https://doi.org/10.3390/cells9020483 (2020).

  • 21.

    Neehus, A. L. et al. Impaired IFNγ-signaling and mycobacterial clearance in IFNγR1-deficient human iPSC-derived macrophages. Stem Cell Rep. 10, 7–16 (2018).

    CAS 

    Google Scholar 

  • 22.

    Dannenmann, B. et al. iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell https://doi.org/10.1016/j.stem.2021.03.023 (2021).

  • 23.

    Dannenmann, B. et al. Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation. Exp. Hematol. 71, 51–60 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Le Voyer, T. et al. Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2102804118 (2021).

  • 25.

    Makaryan, V. et al. Elastase inhibitors as potential therapies for ELANE-associated neutropenia. J. Leukoc. Biol. 102, 1143–1151 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Pittermann, E. et al. Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Adv. 1, 903–914 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Kropp, C. et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cells Transl. Med. 5, 1289–1301 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Manstein, F. et al. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem Cells Transl. Med. https://doi.org/10.1002/sctm.20-0453 (2021).

  • 29.

    Halloin, C. et al. Continuous WNT control enables advanced hPSC cardiac processing and prognostic surface marker identification in chemically defined suspension culture. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2019.09.001 (2019).

  • 30.

    Kempf, H., Kropp, C., Olmer, R., Martin, U. & Zweigerdt, R. Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat. Protoc. 10, 1345–1361 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Olmer, R. et al. Differentiation of human pluripotent stem cells into functional endothelial cells in scalable suspension culture. Stem Cell Rep. 10, 1657–1672 (2018).

    CAS 

    Google Scholar 

  • 32.

    Sahabian, A., Dahlmann, J., Martin, U. & Olmer, R. Production and cryopreservation of definitive endoderm from human pluripotent stem cells under defined and scalable culture conditions. Nat. Protoc. 16, 1581–1599 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Buchrieser, J., James, W. & Moore, M. D. Human induced pluripotent stem cell-derived macrophages share ontogeny with MYB-independent tissue-resident macrophages. Stem Cell Rep. 8, 334–345 (2017).

    CAS 

    Google Scholar 

  • 34.

    Rafiei Hashtchin, A. et al. Human iPSC-derived macrophages for efficient Staphylococcus aureus clearance in a murine pulmonary infection model. Blood Adv. https://doi.org/10.1182/bloodadvances.2021004853 (2021).

  • 35.

    Fattorelli, N. et al. Stem-cell-derived human microglia transplanted into mouse brain to study human disease. Nat. Protoc. 16, 1013–1033 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Capotondo, A. et al. Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells. Sci. Adv. 3, e1701211 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bird, T. G. et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl Acad. Sci. USA 110, 6542–6547 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Moroni, F. et al. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25, 1560–1565 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Ackermann, M. et al. Restored macrophage function ameliorates disease pathophysiology in a mouse model for IL10 receptor deficient very early onset inflammatory bowel disease. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab031 (2021).

  • 41.

    Ackermann, M. et al. Ex vivo generation of genetically modified macrophages from human induced pluripotent stem cells. Transfus. Med. Hemother. 44, 135–142 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lopez-Yrigoyen, M. et al. Genetic programming of macrophages generates an in vitro model for the human erythroid island niche. Nat. Commun. 10, 881 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Ackermann, M. et al. A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica https://doi.org/10.3324/haematol.2019.228064 (2020).

  • 44.

    Bernecker, C. et al. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 28, 1540–1551 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Choi, K. D., Vodyanik, M. & Slukvin, I. I. Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat. Protoc. 6, 296–313 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Doulatov, S. et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13, 459–470 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Vo, L. T. et al. Regulation of embryonic haematopoietic multipotency by EZH1. Nature 553, 506–510 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Gutbier, S. et al. Large-scale production of human iPSC-derived macrophages for drug screening. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21134808 (2020).

  • 49.

    Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    PubMed 

    Google Scholar 

  • 50.

    Cao, X. et al. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Rep. 12, 1282–1297 (2019).

    CAS 

    Google Scholar 

  • 51.

    Ackermann, M. et al. Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials 35, 1531–1542 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Hong, D. et al. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res. Ther. 9, 49 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Lopez-Yrigoyen, M. et al. A human iPSC line capable of differentiating into functional macrophages expressing ZsGreen: a tool for the study and in vivo tracking of therapeutic cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2017.0219 (2018).

  • 54.

    Neehus, A. L. et al. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J. Exp. Med https://doi.org/10.1084/jem.20210501 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Kuo, H. H. et al. Negligible-cost and weekend-free chemically defined human ipsc culture. Stem Cell Rep. 14, 256–270 (2020).

    CAS 

    Google Scholar 

  • 56.

    Ishida, T. et al. Live-cell imaging of macrophage phagocytosis of asbestos fibers under fluorescence microscopy. Genes Environ. 41, 14 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Lewis, L. E., Bain, J. M., Okai, B., Gow, N. A. & Erwig, L. P. Live-cell video microscopy of fungal pathogen phagocytosis. J. Vis. Exp. https://doi.org/10.3791/50196 (2013).

  • Source link