Preloader

Computational challenges and opportunities in spatially resolved transcriptomic data analysis

  • 1.

    Maniatis, S., Petrescu, J. & Phatnani, H. Spatially resolved transcriptomics and its applications in cancer. Curr. Opin. Genet. Dev. 66, 70–77 (2021).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Zhuang, X. Spatially resolved single-cell genomics and transcriptomics by imaging. Nat. Methods 18, 18–22 (2021).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat. Methods 18, 15–18 (2021).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomics data with nonuniform cellular densities. Genome Res. 271288, 120 (2021).

    Google Scholar 

  • 7.

    Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339–342 (2018).

    Article 

    Google Scholar 

  • 8.

    Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell–cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 26, 12–23 (2021).

    Article 

    Google Scholar 

  • 9.

    Yuan, Y. & Bar-Joseph, Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 21, 300 (2020).

    Article 

    Google Scholar 

  • 10.

    Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Bae, S., Choi, H. & Lee, D. S. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab095 (2021).

  • 12.

    Chidester, B., Zhou, T. & Ma, J. SPICEMIX: integrative single-cell spatial modeling for inferring cell identity. Preprint at bioRxiv https://doi.org/10.1101/2020.11.29.383067 (2021).

  • 13.

    Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Preprint at bioRxiv https://doi.org/10.1101/2021.03.01.431313 (2021).

  • 15.

    Petukhov, V., Soldatov, R. A., Khodosevich, K. & Kharchenko, P. V. Bayesian segmentation of spatially resolved transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2020.10.05.326777 (2020).

  • 16.

    Littman, R. et al. Joint cell segmentation and cell type annotation for spatial transcriptomics. Mol. Syst. Biol. 17, e10108 (2021).

    Article 

    Google Scholar 

  • 17.

    Cajigas, I. J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. PNAS 116, 19490–19499 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 1–8 (2020).

    Article 

    Google Scholar 

  • 20.

    Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 1–10, https://doi.org/10.1038/s41587-021-00830-w (2021).

  • 21.

    Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50–e50 (2021).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Miller, B. F., Atta, L., Sahoo, A., Huang, F. & Fan, J. Reference-free cell-type deconvolution of pixel-resolution spatially resolved transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2021.06.15.448381 (2021).

  • 23.

    Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Perkel, J. M. Starfish enterprise: finding RNA patterns in single cells. Nature 572, 549–551 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    CAS 
    Article 

    Google Scholar 

  • Source link