Nadarajah, K. K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 21, 5208 (2020).
Google Scholar
Chapman, J. M., Muhlemann, J. K., Gayomba, S. R. & Muday, G. K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 32, 370–396 (2019).
Google Scholar
Liu, J. et al. Comparative genomic and physiological analyses of a superoxide dismutase mimetic (SODm-123) for its ability to respond to oxidative stress in tomato plants. J. Agric. Food Chem. 68, 13608–13619 (2020).
Google Scholar
Huehne, P. S. et al. Detection of superoxide dismutase (Cu–Zn) isoenzymes in leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl orchid by comparative proteomic analysis. Biochem. Biophys. Rep. 22, 100762 (2020).
Google Scholar
Perry, J. J. P., Shin, D. S., Getzoff, E. D. & Tainer, J. A. The structural biochemistry of the superoxide dismutases. BBA-Proteins Proteom. 1804, 245–262 (2010).
Google Scholar
Mishra, P., Satpati, S., Baral, S. K., Dixit, A. & Sabat, S. C. S95C substitution in CuZn-SOD of Ipomoea carnea: Impact on the structure, function and stability. Mol. Biosyst. 12, 3017–3031 (2016).
Google Scholar
Lin, C. T., Kuo, T. J., Shaw, J. F. & Kao, M. C. Characterization of the dimer-monomer equilibrium of the papaya copper/zinc superoxide dismutase and its equilibrium shift by a single amino acid mutation. J. Agric. Food Chem. 47, 2944–2949 (1999).
Google Scholar
Madanala, R. et al. A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: Gene cloning, expression and characterization of the recombinant protein. Biotechnol. Lett. 33, 2057–2063 (2011).
Google Scholar
Kumar, A. et al. Copper, zinc superoxide dismutase from Caragana jubata: A thermostable enzyme that functions under a broad pH and temperature window. Process Biochem. 51, 1434–1444 (2016).
Google Scholar
Pedone, E., Fiorentino, G., Bartolucci, S. & Limauro, D. Enzymatic antioxidant signatures in hyperthermophilic archaea. Antioxidants 9, 703 (2020).
Google Scholar
Wang, Q., Nie, P., Hou, Y. & Wang, Y. Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr. Purif. 173, 105661 (2020).
Google Scholar
Gangwar, R., Kumari, P., Chatrath, A. & Prasad, R. Characterisation of recombinant thermostable manganese-superoxide dismutase (NeMnSOD) from Nerium oleander. Mol. Biol. Rep. 47, 3251–3270 (2020).
Google Scholar
Xu, X. et al. Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophila. Mol. Cells 27, 423–428 (2009).
Google Scholar
Modarresi, M., Nematzadeh, G. A., Moradian, F. & Alavi, S. M. Identification and cloning of the Cu/Zn superoxide dismutase gene from halophyte plant Aeluropus littoralis. Russ. J. Genet. 48, 118–122 (2012).
Google Scholar
Phucharoen, K., Hoshino, K., Takenaka, Y. & Shinozawa, T. Purification, characterization, and gene sequencing of a catalase from an alkali-and halo-tolerant bacterium, Halomonas sp. SK1. Biosci. Biotechnol. Biochem. 66, 955–962 (2002).
Google Scholar
Ghosh Dastidar, K. et al. An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol. 140, 1279–1296 (2006).
Google Scholar
Takeda, T. et al. Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch. Biochem. Biophys. 376, 82–90 (2000).
Google Scholar
Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68, 338–354 (2006).
Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F. & Del Rio, L. A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151–167 (1995).
Google Scholar
Houmani, H., Rodríguez-Ruiz, M., Palma, J. M., Abdelly, C. & Corpas, F. J. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima. Protoplasma 253, 885–894 (2016).
Google Scholar
Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R. & Parida, A. K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 85, 237 (2006).
Google Scholar
Modarresi, M., Nematzadeh, G. A. & Moradian, F. Molecular characterization of two new Cu/Zn superoxide dismutase genes from halophyte Aeluropus lagopoides. J. Crop Improv. 27, 627–635 (2013).
Google Scholar
Prashanth, S. R., Sadhasivam, V. & Parida, A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res. 17, 281–291 (2008).
Google Scholar
Zeinali, F., Homaei, A. & Kamrani, E. Identification and kinetic characterization of a novel superoxide dismutase from Avicennia marina: An antioxidant enzyme with unique features. Int. J. Biol. Macromol. 105, 1556–1562 (2017).
Google Scholar
Natarajan, P. et al. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun. Biol. 4, 1–10 (2021).
Maity, S., Bhakta, S., Bhowmik, M., Sircar, G. & Bhattacharya, S. G. Identification, cloning, and immunological studies on a major eggplant (Solanum melongena L.) allergen Sola m 1: A new member of profilin allergen family. Mol. Immunol. 118, 210–221 (2020).
Google Scholar
Ghosh, N. et al. Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen. Sci. Rep. 10, 1–15 (2020).
Karan, R., Capes, M. D. & DasSarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8, 1–15 (2012).
Graziano, G. & Merlino, A. Molecular bases of protein halotolerance. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1844, 850–858 (2014).
Google Scholar
Ghosh Dastidar, K. et al. An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol. 140, 1279–1296 (2006).
Google Scholar
Cheng, H. Y. & Song, S. Q. Species and organ diversity in the effects of hydrogen peroxide on superoxide dismutase activity in vitro. J. Integr. Plant Biol. 48, 672–678 (2006).
Google Scholar
Sanyal, R. P., Samant, A., Prashar, V., Misra, H. S. & Saini, A. Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice. Biochem. J. 475, 3105–3121 (2018).
Google Scholar
Majee, M. et al. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem. 279, 28539–28552 (2004).
Google Scholar
Roy, S., Banerjee, V. & Das, K. P. Understanding the physical and molecular basis of stability of arabidopsis DNA Pol λ under UV-B and high NaCl stress. PLoS ONE 10, e0133843 (2015).
Google Scholar
Ruan, L. et al. Characterization of a novel extracellular CuZn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent. Int. J. Biol. Macromol. 163, 2346–2356 (2020).
Google Scholar
Zeinali, F., Homaei, A. & Kamrani, E. Sources of marine superoxide dismutases: Characteristics and applications. Int. J. Biol. Macromol. 79, 627–637 (2015).
Google Scholar
Beauchamp, C. & Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).
Google Scholar
Ghosh, N., Sircar, G., Saha, B., Pandey, N. & Gupta Bhattacharya, S. Search for allergens from the pollen proteome of sunflower (Helianthus annuus L.): A major sensitizer for respiratory allergy patients. PLoS ONE 10, e0138992 (2015).
Google Scholar
Niyomploy, P., Boonsombat, R., Karnchanatat, A. & Sangvanich, P. A superoxide dismutase purified from the roots from Stemona tuberosa. Prep. Biochem. Biotechnol. 44, 663–679 (2014).
Google Scholar
Wiedemann, C., Bellstedt, P. & Görlach, M. CAPITO—a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 29, 1750–1757 (2013).
Google Scholar
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
Google Scholar
Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
Google Scholar
Yogavel, M., Gill, J., Mishra, P. C. & Sharma, A. SAD phasing of a structure based on cocrystallized iodides using an in-house Cu Kα X-ray source: Effects of data redundancy and completeness on structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 63, 931–934 (2007).
Google Scholar
Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
Google Scholar
Eisenberg, D., Weiss, R.M., Terwilliger, T.C. and Wilcox, W. Hydrophobic moments and protein structure, in Faraday Symposia of the Chemical Society: Royal Society of Chemistry, vol. 17. 109–120 (1982).
Fraczkiewicz, R. & Braun, W. A new efficient algorithm for calculating solvent accessible surface areas of macromolecules. J. Comput. Chem. 19, 319–326 (1998).
Google Scholar

