Preloader

Comprehensive characterization and molecular insights into the salt tolerance of a Cu, Zn-superoxide dismutase from an Indian Mangrove, Avicennia marina

  • 1.

    Nadarajah, K. K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 21, 5208 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Chapman, J. M., Muhlemann, J. K., Gayomba, S. R. & Muday, G. K. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 32, 370–396 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Liu, J. et al. Comparative genomic and physiological analyses of a superoxide dismutase mimetic (SODm-123) for its ability to respond to oxidative stress in tomato plants. J. Agric. Food Chem. 68, 13608–13619 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Huehne, P. S. et al. Detection of superoxide dismutase (Cu–Zn) isoenzymes in leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl orchid by comparative proteomic analysis. Biochem. Biophys. Rep. 22, 100762 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Perry, J. J. P., Shin, D. S., Getzoff, E. D. & Tainer, J. A. The structural biochemistry of the superoxide dismutases. BBA-Proteins Proteom. 1804, 245–262 (2010).

    CAS 

    Google Scholar 

  • 6.

    Mishra, P., Satpati, S., Baral, S. K., Dixit, A. & Sabat, S. C. S95C substitution in CuZn-SOD of Ipomoea carnea: Impact on the structure, function and stability. Mol. Biosyst. 12, 3017–3031 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Lin, C. T., Kuo, T. J., Shaw, J. F. & Kao, M. C. Characterization of the dimer-monomer equilibrium of the papaya copper/zinc superoxide dismutase and its equilibrium shift by a single amino acid mutation. J. Agric. Food Chem. 47, 2944–2949 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Madanala, R. et al. A highly stable Cu/Zn superoxide dismutase from Withania somnifera plant: Gene cloning, expression and characterization of the recombinant protein. Biotechnol. Lett. 33, 2057–2063 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Kumar, A. et al. Copper, zinc superoxide dismutase from Caragana jubata: A thermostable enzyme that functions under a broad pH and temperature window. Process Biochem. 51, 1434–1444 (2016).

    CAS 

    Google Scholar 

  • 10.

    Pedone, E., Fiorentino, G., Bartolucci, S. & Limauro, D. Enzymatic antioxidant signatures in hyperthermophilic archaea. Antioxidants 9, 703 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    Wang, Q., Nie, P., Hou, Y. & Wang, Y. Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr. Purif. 173, 105661 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Gangwar, R., Kumari, P., Chatrath, A. & Prasad, R. Characterisation of recombinant thermostable manganese-superoxide dismutase (NeMnSOD) from Nerium oleander. Mol. Biol. Rep. 47, 3251–3270 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Xu, X. et al. Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophila. Mol. Cells 27, 423–428 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Modarresi, M., Nematzadeh, G. A., Moradian, F. & Alavi, S. M. Identification and cloning of the Cu/Zn superoxide dismutase gene from halophyte plant Aeluropus littoralis. Russ. J. Genet. 48, 118–122 (2012).

    CAS 

    Google Scholar 

  • 15.

    Phucharoen, K., Hoshino, K., Takenaka, Y. & Shinozawa, T. Purification, characterization, and gene sequencing of a catalase from an alkali-and halo-tolerant bacterium, Halomonas sp. SK1. Biosci. Biotechnol. Biochem. 66, 955–962 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Ghosh Dastidar, K. et al. An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol. 140, 1279–1296 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Takeda, T. et al. Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch. Biochem. Biophys. 376, 82–90 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Gopal, B. & Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 68, 338–354 (2006).

    Google Scholar 

  • 19.

    Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F. & Del Rio, L. A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151–167 (1995).

    CAS 

    Google Scholar 

  • 20.

    Houmani, H., Rodríguez-Ruiz, M., Palma, J. M., Abdelly, C. & Corpas, F. J. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima. Protoplasma 253, 885–894 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Jithesh, M. N., Prashanth, S. R., Sivaprakash, K. R. & Parida, A. K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 85, 237 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Modarresi, M., Nematzadeh, G. A. & Moradian, F. Molecular characterization of two new Cu/Zn superoxide dismutase genes from halophyte Aeluropus lagopoides. J. Crop Improv. 27, 627–635 (2013).

    CAS 

    Google Scholar 

  • 23.

    Prashanth, S. R., Sadhasivam, V. & Parida, A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res. 17, 281–291 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Zeinali, F., Homaei, A. & Kamrani, E. Identification and kinetic characterization of a novel superoxide dismutase from Avicennia marina: An antioxidant enzyme with unique features. Int. J. Biol. Macromol. 105, 1556–1562 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Natarajan, P. et al. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun. Biol. 4, 1–10 (2021).

    Google Scholar 

  • 26.

    Maity, S., Bhakta, S., Bhowmik, M., Sircar, G. & Bhattacharya, S. G. Identification, cloning, and immunological studies on a major eggplant (Solanum melongena L.) allergen Sola m 1: A new member of profilin allergen family. Mol. Immunol. 118, 210–221 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Ghosh, N. et al. Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen. Sci. Rep. 10, 1–15 (2020).

    Google Scholar 

  • 28.

    Karan, R., Capes, M. D. & DasSarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8, 1–15 (2012).

    Google Scholar 

  • 29.

    Graziano, G. & Merlino, A. Molecular bases of protein halotolerance. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1844, 850–858 (2014).

    CAS 

    Google Scholar 

  • 30.

    Ghosh Dastidar, K. et al. An insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol. 140, 1279–1296 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Cheng, H. Y. & Song, S. Q. Species and organ diversity in the effects of hydrogen peroxide on superoxide dismutase activity in vitro. J. Integr. Plant Biol. 48, 672–678 (2006).

    CAS 

    Google Scholar 

  • 32.

    Sanyal, R. P., Samant, A., Prashar, V., Misra, H. S. & Saini, A. Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice. Biochem. J. 475, 3105–3121 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Majee, M. et al. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: Molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J. Biol. Chem. 279, 28539–28552 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Roy, S., Banerjee, V. & Das, K. P. Understanding the physical and molecular basis of stability of arabidopsis DNA Pol λ under UV-B and high NaCl stress. PLoS ONE 10, e0133843 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Ruan, L. et al. Characterization of a novel extracellular CuZn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent. Int. J. Biol. Macromol. 163, 2346–2356 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Zeinali, F., Homaei, A. & Kamrani, E. Sources of marine superoxide dismutases: Characteristics and applications. Int. J. Biol. Macromol. 79, 627–637 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Beauchamp, C. & Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Ghosh, N., Sircar, G., Saha, B., Pandey, N. & Gupta Bhattacharya, S. Search for allergens from the pollen proteome of sunflower (Helianthus annuus L.): A major sensitizer for respiratory allergy patients. PLoS ONE 10, e0138992 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Niyomploy, P., Boonsombat, R., Karnchanatat, A. & Sangvanich, P. A superoxide dismutase purified from the roots from Stemona tuberosa. Prep. Biochem. Biotechnol. 44, 663–679 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Wiedemann, C., Bellstedt, P. & Görlach, M. CAPITO—a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 29, 1750–1757 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Yogavel, M., Gill, J., Mishra, P. C. & Sharma, A. SAD phasing of a structure based on cocrystallized iodides using an in-house Cu Kα X-ray source: Effects of data redundancy and completeness on structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 63, 931–934 (2007).

    CAS 

    Google Scholar 

  • 44.

    Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Eisenberg, D., Weiss, R.M., Terwilliger, T.C. and Wilcox, W. Hydrophobic moments and protein structure, in Faraday Symposia of the Chemical Society: Royal Society of Chemistry, vol. 17. 109–120 (1982).

  • 46.

    Fraczkiewicz, R. & Braun, W. A new efficient algorithm for calculating solvent accessible surface areas of macromolecules. J. Comput. Chem. 19, 319–326 (1998).

    CAS 

    Google Scholar 

  • Source link