Majka, M., Kwiatek, M. T., Majka, J. & Wiśniewska, H. Aegilops tauschii accessions with geographically diverse origin show differences in chromosome organization and polymorphism of molecular markers linked to leaf rust and powdery mildew resistance genes. Front. Plant Sci. 8, 1149–1160. https://doi.org/10.3389/fpls.2017.01149 (2017).
Google Scholar
Knott, D. R. Genetic analysis of resistance. In The Wheat Rusts Breeding for Resistance 58–83 (Springer, 1989).
Google Scholar
Park, R. F. et al. Leaf rust of cultivated barley: Pathology and control. Annu. Rev. Phytopathol. 53(26), 565–589. https://doi.org/10.1146/annurev-phyto-080614-120324 (2015).
Google Scholar
Kolmer, J. A. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 34(1), 435–455. https://doi.org/10.1146/annurev.phyto.34.1.435 (1996).
Google Scholar
Chen, X., Coram, T., Huang, X., Wang, M. & Dolezal, A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr. Genet. 14(2), 111–126. https://doi.org/10.2174/1389202911314020004 (2013).
Google Scholar
Kolmer, J. A. et al. Virulence of Puccinia triticina in Turkey and leaf rust resistance in Turkish wheat cultivars. Eur. J. Plant Pathol. 135(4), 703–716. https://doi.org/10.1007/s10658-012-0107-1 (2013).
Google Scholar
Kalia, B., Wilson, D. L., Bowden, R. L., Singh, R. P. & Gill, B. S. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii. Genet. Resour. Crop Evol. 64(5), 913–926. https://doi.org/10.1007/s10722-016-0411-2 (2017).
Google Scholar
Food and Agriculture Organization of the United Nations FAO. Plant Production and Protection Paper. (Food and Agriculture Organization of the United Nations, 2019).
Hasanzadeh, M., Safaie, N., Eslahi, M. R., Dadrezaei, S. T. & Tabatabaei, S. N. Regional monitoring of the dynamic of wheat leaf rust (Puccinia triticina Eriks) in southwest of Iran, Khuzestan province. J. Agric. Sci. Tech. 21(6), 1595–1605 (2019).
Lee, A. et al. Characterization of two leaf rust-resistant Aegilops tauschii accessions for the synthetic wheat development. Appl. Biol. Chem. 63(1), 1–14. https://doi.org/10.1186/s13765-020-00496-z (2020).
Google Scholar
Zhao, G. et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants. 3(12), 946–955. https://doi.org/10.1038/s41477-017-0067-8 (2017).
Google Scholar
Valkoun, J., Hammer, K., Kučerová, D. & Bartoš, P. Disease resistance in the genus Aegilops L. stem rust, leaf rust, stripe rust, and powdery mildew. Die Kulturpflanze. 33(2), 133–153. https://doi.org/10.1007/BF01997267 (1985).
Google Scholar
Apolinarska, B., Wiśeniewska, H. & Wojciechowska, B. Aegilops-rye amphiploids and substitution rye used for introgression of genetic material into rye (Secale cereale L.). J. Appl. Genet. 51(4), 413–420. https://doi.org/10.1007/BF03208871 (2010).
Google Scholar
Wu, L. et al. Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genet. 20(1), 9–19. https://doi.org/10.1186/s12863-018-0700-1 (2019).
Google Scholar
Howard, B. E. & Heber, S. Towards reliable isoform quantification using RNA-SEQ data. BMC Bioinform. 11(3), 1–13. https://doi.org/10.1186/1471-2105-11-S3-S6 (2010).
Google Scholar
Zhang, N. et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 56(1), 39–50. https://doi.org/10.1111/jpi.12095 (2014).
Google Scholar
Dobon, A., Bunting, D. C., Cabrera-Quio, L. E., Uauy, C. & Saunders, D. G. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17(1), 1–4. https://doi.org/10.1186/s12864-016-2684-4 (2016).
Google Scholar
Yadav, I. S. et al. Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Front. Plant Sci. 7, 1943–1961. https://doi.org/10.3389/fpls.2016.01943 (2016).
Google Scholar
Tarazona, S., Furió-Tarı, P., Ferrer, A., & Conesa, A. NOISeq: Differential Expression in RNA–seq. Version 2.16.0 (2013).
Tarazona, S. et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43(21), e140–e140. https://doi.org/10.1093/nar/gkv711 (2015).
Google Scholar
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18), 2847–2849. https://doi.org/10.1093/bioinformatics/btw313 (2016).
Google Scholar
Das, A., Pramanik, K., Sharma, R., Gantait, S. & Banerjee, J. In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. PLoS ONE 14(2), e0211887. https://doi.org/10.1371/journal.pone.0211887 (2019).
Google Scholar
Cantu, D. et al. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 14(1), 270–227. https://doi.org/10.1186/1471-2164-14-270 (2013).
Google Scholar
Poretti, M. et al. Comparative transcriptome analysis of wheat lines in the field reveals multiple essential biochemical pathways suppressed by obligate pathogens. Front. Plant Sci. 12, 720462. https://doi.org/10.3389/fpls.2021.720462 (2021).
Google Scholar
You, J. et al. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 19(1), 1–6. https://doi.org/10.1186/s12870-019-1880-1 (2019).
Google Scholar
Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. & Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55, 401–425. https://doi.org/10.1146/annurev-phyto-080516-035544 (2017).
Google Scholar
Han, X. & Kahmann, R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 10, 822–835. https://doi.org/10.3389/fpls.2019.00822 (2019).
Google Scholar
Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223 (2009).
Google Scholar
Alvarez, M. E., Nota, F. & Cambiagno, D. A. Epigenetic control of plant immunity. Mol. Plant Pathol. 11(4), 563–576. https://doi.org/10.1111/j.1364-3703.2010.00621.x (2010).
Google Scholar
Oostendorp, M., Kunz, W., Dietrich, B. & Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107(1), 19–28. https://doi.org/10.1023/A:1008760518772 (2010).
Google Scholar
Cohen, Y. & Gisi, U. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans. Phytopathology 97(10), 1274–1283. https://doi.org/10.1094/PHYTO-97-10-1274 (2007).
Google Scholar
Franceschi, V. R. & Nakata, P. A. Calcium oxalate in plants: Formation and function. Annu. Rev. Plant Biol. 56, 41–71. https://doi.org/10.1146/annurev.arplant.56.032604.144106 (2005).
Google Scholar
Morgunov, I. G. et al. Application of organic acids for plant protection against phytopathogens. Appl. Microbiol. Biotechnol. 101, 921–932. https://doi.org/10.1007/s00253-016-8067-6 (2017).
Google Scholar
Parthasarathy, A. et al. A three–ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 5, 29–59. https://doi.org/10.3389/fmolb.2018.00029 (2018).
Google Scholar
Ferrari, S. et al. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144(1), 367–379. https://doi.org/10.1104/pp.107.095596 (2007).
Google Scholar
Fagard, M. et al. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 65(19), 5643–5656. https://doi.org/10.1093/jxb/eru323 (2014).
Google Scholar
Zhang, T. et al. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 18(1), 235–249. https://doi.org/10.1186/s12870-018-1441-z (2018).
Google Scholar
Lorenzo, O., Chico, J. M., Saénchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7), 1938–1950. https://doi.org/10.1105/tpc.022319 (2004).
Google Scholar
Yamamura, C. et al. Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J. 84(6), 1100–1113. https://doi.org/10.1111/tpj.13065 (2015).
Google Scholar
Hennet, T. C. The galactosyltransferase family. Cell. Mol. Life. Sci. 59(7), 1081–1095. https://doi.org/10.1007/s00018-002-8489-4 (2002).
Google Scholar
Lin, B., Qing, X., Liao, J. & Zhuo, K. Role of protein glycosylation in host–pathogen interaction. Cells 9(4), 1022. https://doi.org/10.3390/cells9041022 (2020).
Google Scholar
Berger, S., Sinha, A. K. & Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 58(15–16), 4019–4026. https://doi.org/10.1093/jxb/erm298 (2007).
Google Scholar
Ghosh, S., Kanwar, P. & Jha, G. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Sci. Rep. 7, 41610. https://doi.org/10.1038/srep41610 (2017).
Google Scholar
Cohen, S. P. & Leach, J. E. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci. Rep. 9(1), 1–11. https://doi.org/10.1038/s41598-019-42731-8 (2019).
Google Scholar
Beckles, D. M. & Roessner, U. Plant metabolomics: Applications and opportunities for agricultural biotechnology. In Plant Biotechnology and Agriculture 67–81 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-381466-1.00005-5.
Google Scholar
Kourelis, J. & Van Der Hoorn, R. A. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30(2), 285–299. https://doi.org/10.1105/tpc.17.00579 (2018).
Google Scholar
van Wersch, S., Tian, L., Hoy, R. & Li, X. Plant NLRs: The whistleblowers of plant immunity. Plant Commun. 1(1), 100016. https://doi.org/10.1016/j.xplc.2019.100016 (2020).
Google Scholar
Sun, Y., Zhu, Y. X., Balint-Kurti, P. J. & Wang, G. F. Fine-tuning immunity: Players and regulators for plant NLRs. Trends Plant Sci. 25(7), 695–713. https://doi.org/10.1016/j.tplants.2020.02.008 (2020).
Google Scholar
Hörger, A. C. & Van der Hoorn, R. A. The structural basis of specific protease–inhibitor interactions at the plant–pathogen interface. Curr. Opin. Struct. Boil. 23(6), 842–850. https://doi.org/10.1016/j.sbi.2013.07.013 (2013).
Google Scholar
Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M. & Noctor, G. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63(4), 1619–1636. https://doi.org/10.1093/jxb/err402 (2012).
Google Scholar
Rojas, C. M., Senthil-Kumar, M., Tzin, V. & Mysore, K. Regulation of primary plant metabolism during plant–pathogen interactions and its contribution to plant defense. Front. Plant Sci. 5, 17. https://doi.org/10.3389/fpls.2014.00017 (2014).
Google Scholar
Gorelova, V., Ambach, L., Rébeillé, F., Stove, C. & Van Der Straeten, D. Folates in plants: Research advances and progress in crop biofortification. Front. Chem. 5, 21. https://doi.org/10.3389/fchem.2017.00021 (2017).
Google Scholar
Nwachukwu, I. D., Slusarenko, A. J. & Gruhlke, M. C. Sulfur and sulfur compounds in plant defence. Nat. Prod. Commun. 7(3), 1934578X120070032. https://doi.org/10.1177/1934578X1200700323 (2012).
Google Scholar
Tobias, P. A., Guest, D. I., Külheim, C. & De Park, R. F. novo transcriptome study identifies candidate genes involved in resistance to Austropuccinia psidii (myrtle rust) in Syzygium luehmannii (Riberry). Phytopathology 108(5), 627–640. https://doi.org/10.1094/PHYTO-09-17-0298-R (2018).
Google Scholar
Bergey, D. R., Kandel, R., Tyree, B. K., Dutt, M. & Dhekney, S. A. The role of calmodulin and related proteins in plant cell function: An ever-thickening plot. Springer Sci. Rev. 2(1), 145–159. https://doi.org/10.1007/s40362-014-0025-z (2014).
Google Scholar
Fesel, P. H. & Zuccaro, A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90, 53–60. https://doi.org/10.1016/j.fgb.2015.12.004 (2016).
Google Scholar
Wang, W., Feng, B., Zhou, J. M. & Tang, D. Plant immune signaling: Advancing on two frontiers. J. Integr. Plant Biol. 62(1), 2–24. https://doi.org/10.1111/jipb.12898 (2020).
Google Scholar
Chandra, S. et al. De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection. PLoS ONE 11(2), e0148453. https://doi.org/10.1371/journal.pone.0148453 (2016).
Google Scholar
Tang, D., Wang, G. & Zhou, J. M. Receptor kinases in plant–pathogen interactions: More than pattern recognition. Plant Cell 29(4), 618–637. https://doi.org/10.1105/tpc.16.00891 (2017).
Google Scholar
Li, Y. et al. Glycerol-induced powdery mildew resistance in wheat by regulating plant fatty acid metabolism, plant hormones cross-talk, and pathogenesis-related genes. Int. J. Mol. Sci. 21(2), 673. https://doi.org/10.3390/ijms21020673 (2020).
Google Scholar
Park, J. A. et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42(2), 153–163. https://doi.org/10.1111/j.1365-313X.2005.02361.x (2005).
Google Scholar
Kumar, S. et al. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor. Appl. Genet. 134(3), 849–858. https://doi.org/10.1007/s00122-020-03735-5 (2021).
Google Scholar
Prasad, P., Savadi, S., Bhardwaj, S. C. & Gupta, P. K. The progress of leaf rust research in wheat. Fungal Biol. 124(6), 537–550. https://doi.org/10.1016/j.funbio.2020.02.013 (2020).
Google Scholar
Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164(2), 655–664. https://doi.org/10.1093/genetics/164.2.655 (2003).
Google Scholar
Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35(8), 793–796. https://doi.org/10.1038/nbt.3877 (2017).
Google Scholar
Rowland, G. G. & Kerber, E. R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 16(1), 137–144. https://doi.org/10.1139/g74-013 (1974).
Google Scholar
Cloutier, S. et al. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65(1), 93–106. https://doi.org/10.1007/s11103-007-9201-8 (2007).
Google Scholar
Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. 100(25), 15253–15258. https://doi.org/10.1073/pnas.2435133100 (2003).
Google Scholar
Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919), 1360–1363. https://doi.org/10.1126/science.1166453 (2009).
Google Scholar
Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47(12), 1494–1498. https://doi.org/10.1038/ng.3439 (2015).
Google Scholar
Ling, H. Q., Qiu, J., Singh, R. P. & Keller, B. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor. Appl. Genet. 109(6), 1133–1138. https://doi.org/10.1007/s00122-004-1734-5 (2004).
Google Scholar
Aliakbari Sadeghabad, A., Dadkhodaie, A. & Heidari, B. Phenotypic and genetic diversity of leaf rust resistance in wheat wild relatives. J. Phytopathol. 168(7–8), 428–438. https://doi.org/10.1111/jph.12907 (2020).
Google Scholar
Nemati, Z. et al. Virulence of leaf rust physiological races in Iran from 2010 to 2017. Plant Dis. 104(2), 363–372. https://doi.org/10.1094/PDIS-06-19-1340-RE (2020).
Google Scholar
Coram, T. E., Settles, M. L. & Chen, X. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array. BMC Genomics 10(1), 253–264. https://doi.org/10.1186/1471-2164-10-253 (2009).
Google Scholar
McIntosh, R. A., Wellings, C. R. & Park, R. F. Wheat Rusts: An Atlas of Resistance Genes (CSIRO Publishing, 1995).
Google Scholar
Bolger, A. & Giorgi, F. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24), 3211–3217. https://doi.org/10.1093/bioinformatics/bts611 (2012).
Google Scholar
Cuomo, C. A. et al. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 Genes Genome Genet. 7(2), 361–376. https://doi.org/10.1534/g3.116.032797 (2017).
Google Scholar
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).
Google Scholar
Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681), 498–502. https://doi.org/10.1038/nature24486 (2017).
Google Scholar
Anders, S., Pyl, P. T. & Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015).
Google Scholar
Li, H. D. GTFtools: A Python package for analyzing various modes of gene models. bioRxiv. https://doi.org/10.1101/263517 (2018).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).
Google Scholar
Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment analysis for Gene Ontology. R package version 2.28. 0. Cranio. (2016).
Lu, M. W. et al. Transcriptome characterization and gene expression of Epinephelus spp. in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro. BMC Genomics 13(1), 651–666. https://doi.org/10.1186/1471-2164-13-651 (2012).
Google Scholar
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(suppl_1), D480–D484. https://doi.org/10.1093/nar/gkm882 (2007).
Google Scholar
El-Gebali, S. et al. The Pfam protein families’ database in 2019. Nucleic Acids Res. 47(D1), D427–D432. https://doi.org/10.1093/nar/28.1.263 (2019).
Google Scholar
Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031 (2014).
Google Scholar
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478 (2000).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real–time quantitative PCR and the 2− ΔΔCT method. Methods 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
Google Scholar

