Preloader

Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing

  • 1.

    Majka, M., Kwiatek, M. T., Majka, J. & Wiśniewska, H. Aegilops tauschii accessions with geographically diverse origin show differences in chromosome organization and polymorphism of molecular markers linked to leaf rust and powdery mildew resistance genes. Front. Plant Sci. 8, 1149–1160. https://doi.org/10.3389/fpls.2017.01149 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Knott, D. R. Genetic analysis of resistance. In The Wheat Rusts Breeding for Resistance 58–83 (Springer, 1989).

    Chapter 

    Google Scholar 

  • 3.

    Park, R. F. et al. Leaf rust of cultivated barley: Pathology and control. Annu. Rev. Phytopathol. 53(26), 565–589. https://doi.org/10.1146/annurev-phyto-080614-120324 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Kolmer, J. A. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 34(1), 435–455. https://doi.org/10.1146/annurev.phyto.34.1.435 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Chen, X., Coram, T., Huang, X., Wang, M. & Dolezal, A. Understanding molecular mechanisms of durable and non-durable resistance to stripe rust in wheat using a transcriptomics approach. Curr. Genet. 14(2), 111–126. https://doi.org/10.2174/1389202911314020004 (2013).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kolmer, J. A. et al. Virulence of Puccinia triticina in Turkey and leaf rust resistance in Turkish wheat cultivars. Eur. J. Plant Pathol. 135(4), 703–716. https://doi.org/10.1007/s10658-012-0107-1 (2013).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Kalia, B., Wilson, D. L., Bowden, R. L., Singh, R. P. & Gill, B. S. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii. Genet. Resour. Crop Evol. 64(5), 913–926. https://doi.org/10.1007/s10722-016-0411-2 (2017).

    Article 

    Google Scholar 

  • 8.

    Food and Agriculture Organization of the United Nations FAO. Plant Production and Protection Paper. (Food and Agriculture Organization of the United Nations, 2019).

  • 9.

    Hasanzadeh, M., Safaie, N., Eslahi, M. R., Dadrezaei, S. T. & Tabatabaei, S. N. Regional monitoring of the dynamic of wheat leaf rust (Puccinia triticina Eriks) in southwest of Iran, Khuzestan province. J. Agric. Sci. Tech. 21(6), 1595–1605 (2019).

    Google Scholar 

  • 10.

    Lee, A. et al. Characterization of two leaf rust-resistant Aegilops tauschii accessions for the synthetic wheat development. Appl. Biol. Chem. 63(1), 1–14. https://doi.org/10.1186/s13765-020-00496-z (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Zhao, G. et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants. 3(12), 946–955. https://doi.org/10.1038/s41477-017-0067-8 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Valkoun, J., Hammer, K., Kučerová, D. & Bartoš, P. Disease resistance in the genus Aegilops L. stem rust, leaf rust, stripe rust, and powdery mildew. Die Kulturpflanze. 33(2), 133–153. https://doi.org/10.1007/BF01997267 (1985).

    Article 

    Google Scholar 

  • 13.

    Apolinarska, B., Wiśeniewska, H. & Wojciechowska, B. Aegilops-rye amphiploids and substitution rye used for introgression of genetic material into rye (Secale cereale L.). J. Appl. Genet. 51(4), 413–420. https://doi.org/10.1007/BF03208871 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Wu, L. et al. Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genet. 20(1), 9–19. https://doi.org/10.1186/s12863-018-0700-1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Howard, B. E. & Heber, S. Towards reliable isoform quantification using RNA-SEQ data. BMC Bioinform. 11(3), 1–13. https://doi.org/10.1186/1471-2105-11-S3-S6 (2010).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Zhang, N. et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 56(1), 39–50. https://doi.org/10.1111/jpi.12095 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Dobon, A., Bunting, D. C., Cabrera-Quio, L. E., Uauy, C. & Saunders, D. G. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17(1), 1–4. https://doi.org/10.1186/s12864-016-2684-4 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Yadav, I. S. et al. Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Front. Plant Sci. 7, 1943–1961. https://doi.org/10.3389/fpls.2016.01943 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Tarazona, S., Furió-Tarı, P., Ferrer, A., & Conesa, A. NOISeq: Differential Expression in RNA–seq. Version 2.16.0 (2013).

  • 20.

    Tarazona, S. et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43(21), e140–e140. https://doi.org/10.1093/nar/gkv711 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18), 2847–2849. https://doi.org/10.1093/bioinformatics/btw313 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Das, A., Pramanik, K., Sharma, R., Gantait, S. & Banerjee, J. In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. PLoS ONE 14(2), e0211887. https://doi.org/10.1371/journal.pone.0211887 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Cantu, D. et al. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 14(1), 270–227. https://doi.org/10.1186/1471-2164-14-270 (2013).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Poretti, M. et al. Comparative transcriptome analysis of wheat lines in the field reveals multiple essential biochemical pathways suppressed by obligate pathogens. Front. Plant Sci. 12, 720462. https://doi.org/10.3389/fpls.2021.720462 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    You, J. et al. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 19(1), 1–6. https://doi.org/10.1186/s12870-019-1880-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. & Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55, 401–425. https://doi.org/10.1146/annurev-phyto-080516-035544 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Han, X. & Kahmann, R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 10, 822–835. https://doi.org/10.3389/fpls.2019.00822 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Alvarez, M. E., Nota, F. & Cambiagno, D. A. Epigenetic control of plant immunity. Mol. Plant Pathol. 11(4), 563–576. https://doi.org/10.1111/j.1364-3703.2010.00621.x (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Oostendorp, M., Kunz, W., Dietrich, B. & Staub, T. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107(1), 19–28. https://doi.org/10.1023/A:1008760518772 (2010).

    Article 

    Google Scholar 

  • 31.

    Cohen, Y. & Gisi, U. Differential activity of carboxylic acid amide fungicides against various developmental stages of Phytophthora infestans. Phytopathology 97(10), 1274–1283. https://doi.org/10.1094/PHYTO-97-10-1274 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Franceschi, V. R. & Nakata, P. A. Calcium oxalate in plants: Formation and function. Annu. Rev. Plant Biol. 56, 41–71. https://doi.org/10.1146/annurev.arplant.56.032604.144106 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Morgunov, I. G. et al. Application of organic acids for plant protection against phytopathogens. Appl. Microbiol. Biotechnol. 101, 921–932. https://doi.org/10.1007/s00253-016-8067-6 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Parthasarathy, A. et al. A three–ring circus: Metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 5, 29–59. https://doi.org/10.3389/fmolb.2018.00029 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Ferrari, S. et al. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144(1), 367–379. https://doi.org/10.1104/pp.107.095596 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Fagard, M. et al. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 65(19), 5643–5656. https://doi.org/10.1093/jxb/eru323 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Zhang, T. et al. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 18(1), 235–249. https://doi.org/10.1186/s12870-018-1441-z (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Lorenzo, O., Chico, J. M., Saénchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7), 1938–1950. https://doi.org/10.1105/tpc.022319 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Yamamura, C. et al. Diterpenoid phytoalexin factor, a bHLH transcription factor, plays a central role in the biosynthesis of diterpenoid phytoalexins in rice. Plant J. 84(6), 1100–1113. https://doi.org/10.1111/tpj.13065 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Hennet, T. C. The galactosyltransferase family. Cell. Mol. Life. Sci. 59(7), 1081–1095. https://doi.org/10.1007/s00018-002-8489-4 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lin, B., Qing, X., Liao, J. & Zhuo, K. Role of protein glycosylation in host–pathogen interaction. Cells 9(4), 1022. https://doi.org/10.3390/cells9041022 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Berger, S., Sinha, A. K. & Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interactions. J. Exp. Bot. 58(15–16), 4019–4026. https://doi.org/10.1093/jxb/erm298 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Ghosh, S., Kanwar, P. & Jha, G. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Sci. Rep. 7, 41610. https://doi.org/10.1038/srep41610 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Cohen, S. P. & Leach, J. E. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci. Rep. 9(1), 1–11. https://doi.org/10.1038/s41598-019-42731-8 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Beckles, D. M. & Roessner, U. Plant metabolomics: Applications and opportunities for agricultural biotechnology. In Plant Biotechnology and Agriculture 67–81 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-381466-1.00005-5.

    Chapter 

    Google Scholar 

  • 46.

    Kourelis, J. & Van Der Hoorn, R. A. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30(2), 285–299. https://doi.org/10.1105/tpc.17.00579 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    van Wersch, S., Tian, L., Hoy, R. & Li, X. Plant NLRs: The whistleblowers of plant immunity. Plant Commun. 1(1), 100016. https://doi.org/10.1016/j.xplc.2019.100016 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Sun, Y., Zhu, Y. X., Balint-Kurti, P. J. & Wang, G. F. Fine-tuning immunity: Players and regulators for plant NLRs. Trends Plant Sci. 25(7), 695–713. https://doi.org/10.1016/j.tplants.2020.02.008 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Hörger, A. C. & Van der Hoorn, R. A. The structural basis of specific protease–inhibitor interactions at the plant–pathogen interface. Curr. Opin. Struct. Boil. 23(6), 842–850. https://doi.org/10.1016/j.sbi.2013.07.013 (2013).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M. & Noctor, G. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63(4), 1619–1636. https://doi.org/10.1093/jxb/err402 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Rojas, C. M., Senthil-Kumar, M., Tzin, V. & Mysore, K. Regulation of primary plant metabolism during plant–pathogen interactions and its contribution to plant defense. Front. Plant Sci. 5, 17. https://doi.org/10.3389/fpls.2014.00017 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Gorelova, V., Ambach, L., Rébeillé, F., Stove, C. & Van Der Straeten, D. Folates in plants: Research advances and progress in crop biofortification. Front. Chem. 5, 21. https://doi.org/10.3389/fchem.2017.00021 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Nwachukwu, I. D., Slusarenko, A. J. & Gruhlke, M. C. Sulfur and sulfur compounds in plant defence. Nat. Prod. Commun. 7(3), 1934578X120070032. https://doi.org/10.1177/1934578X1200700323 (2012).

    Article 

    Google Scholar 

  • 54.

    Tobias, P. A., Guest, D. I., Külheim, C. & De Park, R. F. novo transcriptome study identifies candidate genes involved in resistance to Austropuccinia psidii (myrtle rust) in Syzygium luehmannii (Riberry). Phytopathology 108(5), 627–640. https://doi.org/10.1094/PHYTO-09-17-0298-R (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Bergey, D. R., Kandel, R., Tyree, B. K., Dutt, M. & Dhekney, S. A. The role of calmodulin and related proteins in plant cell function: An ever-thickening plot. Springer Sci. Rev. 2(1), 145–159. https://doi.org/10.1007/s40362-014-0025-z (2014).

    Article 

    Google Scholar 

  • 56.

    Fesel, P. H. & Zuccaro, A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90, 53–60. https://doi.org/10.1016/j.fgb.2015.12.004 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Wang, W., Feng, B., Zhou, J. M. & Tang, D. Plant immune signaling: Advancing on two frontiers. J. Integr. Plant Biol. 62(1), 2–24. https://doi.org/10.1111/jipb.12898 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Chandra, S. et al. De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection. PLoS ONE 11(2), e0148453. https://doi.org/10.1371/journal.pone.0148453 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Tang, D., Wang, G. & Zhou, J. M. Receptor kinases in plant–pathogen interactions: More than pattern recognition. Plant Cell 29(4), 618–637. https://doi.org/10.1105/tpc.16.00891 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Li, Y. et al. Glycerol-induced powdery mildew resistance in wheat by regulating plant fatty acid metabolism, plant hormones cross-talk, and pathogenesis-related genes. Int. J. Mol. Sci. 21(2), 673. https://doi.org/10.3390/ijms21020673 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Park, J. A. et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42(2), 153–163. https://doi.org/10.1111/j.1365-313X.2005.02361.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Kumar, S. et al. Lr80: A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor. Appl. Genet. 134(3), 849–858. https://doi.org/10.1007/s00122-020-03735-5 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Prasad, P., Savadi, S., Bhardwaj, S. C. & Gupta, P. K. The progress of leaf rust research in wheat. Fungal Biol. 124(6), 537–550. https://doi.org/10.1016/j.funbio.2020.02.013 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164(2), 655–664. https://doi.org/10.1093/genetics/164.2.655 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35(8), 793–796. https://doi.org/10.1038/nbt.3877 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Rowland, G. G. & Kerber, E. R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 16(1), 137–144. https://doi.org/10.1139/g74-013 (1974).

    Article 

    Google Scholar 

  • 67.

    Cloutier, S. et al. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Biol. 65(1), 93–106. https://doi.org/10.1007/s11103-007-9201-8 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 68.

    Feuillet, C. et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. 100(25), 15253–15258. https://doi.org/10.1073/pnas.2435133100 (2003).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919), 1360–1363. https://doi.org/10.1126/science.1166453 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47(12), 1494–1498. https://doi.org/10.1038/ng.3439 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Ling, H. Q., Qiu, J., Singh, R. P. & Keller, B. Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor. Appl. Genet. 109(6), 1133–1138. https://doi.org/10.1007/s00122-004-1734-5 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 72.

    Aliakbari Sadeghabad, A., Dadkhodaie, A. & Heidari, B. Phenotypic and genetic diversity of leaf rust resistance in wheat wild relatives. J. Phytopathol. 168(7–8), 428–438. https://doi.org/10.1111/jph.12907 (2020).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Nemati, Z. et al. Virulence of leaf rust physiological races in Iran from 2010 to 2017. Plant Dis. 104(2), 363–372. https://doi.org/10.1094/PDIS-06-19-1340-RE (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 74.

    Coram, T. E., Settles, M. L. & Chen, X. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array. BMC Genomics 10(1), 253–264. https://doi.org/10.1186/1471-2164-10-253 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    McIntosh, R. A., Wellings, C. R. & Park, R. F. Wheat Rusts: An Atlas of Resistance Genes (CSIRO Publishing, 1995).

    Book 

    Google Scholar 

  • 76.

    Bolger, A. & Giorgi, F. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24), 3211–3217. https://doi.org/10.1093/bioinformatics/bts611 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 78.

    Cuomo, C. A. et al. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 Genes Genome Genet. 7(2), 361–376. https://doi.org/10.1534/g3.116.032797 (2017).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 80.

    Luo, M. C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551(7681), 498–502. https://doi.org/10.1038/nature24486 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 82.

    Li, H. D. GTFtools: A Python package for analyzing various modes of gene models. bioRxiv. https://doi.org/10.1101/263517 (2018).

    Article 

    Google Scholar 

  • 83.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616 (2010).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Alexa, A., & Rahnenfuhrer, J. topGO: Enrichment analysis for Gene Ontology. R package version 2.28. 0. Cranio. (2016).

  • 85.

    Lu, M. W. et al. Transcriptome characterization and gene expression of Epinephelus spp. in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro. BMC Genomics 13(1), 651–666. https://doi.org/10.1186/1471-2164-13-651 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(suppl_1), D480–D484. https://doi.org/10.1093/nar/gkm882 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    El-Gebali, S. et al. The Pfam protein families’ database in 2019. Nucleic Acids Res. 47(D1), D427–D432. https://doi.org/10.1093/nar/28.1.263 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 88.

    Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 90.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real–time quantitative PCR and the 2− ΔΔCT method. Methods 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

    CAS 
    Article 

    Google Scholar 

  • Source link