Preloader

Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum

  • 1.

    Yoo, M. J. & Wendel, J. F. Comparative evolutionary and developmental dynamics of the cotton (Gossypium Hirsutum) fiber transcriptome. PLoS Genet. 10, e1004073 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Kim, H. J. & Triplett, B. A. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    McCombie, W. R., McPherson, J. D. & Mardis, E. R. Next-generation sequencing technologies. Cold Spring Harb. Perspect. Med. 9, 1–10 (2019).

    Google Scholar 

  • 4.

    Arya, S. K., Dhar, Y. V., Upadhyay, S. K., Asif, M. H. & Verma, P. C. De novo characterization of phenacoccus solenopsis transcriptome and analysis of gene expression profiling during development and hormone biosynthesis. Sci. Rep. 8, 7573 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Filichkin, S. A. et al. Genome-wide mapping of alternative splicing in Arabidopsis Thaliana. Genome Res. 20, 45–58 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Quesada, T. et al. Comparative analysis of the transcriptomes of Populus Trichocarpa and Arabidopsis Thaliana suggests extensive evolution of gene expression regulation in Angiosperms. New Phytol. 180, 408–420 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Severin, A. J. et al. RNA-seq atlas of glycine max: A guide to the Soybean transcriptome. BMC Plant Biol. 10, 160 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Fu, C. et al. Transcriptomic analysis reveals new insights into high-temperature-dependent glume-unclosing in an elite rice male sterile line. Front. Plant Sci. 8, 112 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Shu, Y., Li, W., Zhao, J., Liu, Y. & Guo, C. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago Ruthenica. Genet. Mol. Biol. 41, 638–648 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Zhang, B. et al. A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during anther development of upland cotton carrying cytoplasmic male sterile Gossypium Harknessii (D2) cytoplasm. BMC Plant Biol. 18, 242 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Jian, H. et al. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica Napus L. BMC Genomics 20, 21 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Odintsova, T. I. et al. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ 7, e6125 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Qian, Y., Ren, Q., Zhang, J. & Chen, L. Transcriptomic analysis of the maize (Zea Mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 692, 68–78 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Cao, A. et al. Comparative transcriptome analysis of SE initial dedifferentiation in cotton of different SE capability. Sci. Rep. 7, 8583 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Parekh, M. J., Kumar, S., Fougat, R. S., Zala, H. N. & Pandit, R. J. Transcriptomic profiling of developing fiber in levant cotton (Gossypium Herbaceum L.). Funct. Integr. Genomics. 18, 211–223 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Hamid, R., Marashi, H., Tomar, R. S., Malekzadeh, S. S. & Sabara, P. H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium Hirsutum L.). PLoS ONE 14, e218381 (2019).

    Google Scholar 

  • 17.

    Padmalatha, K. V. et al. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol. Biol. 78, 223–246 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Li, P. T. et al. Comparative transcriptome analysis of cotton fiber development of upland cotton (Gossypium Hirsutum) and chromosome segment substitution lines from G. Hirsutum x G. Barbadense. BMC Genomics 18, 705 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hu, H. et al. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium Hirsutum L.). Plant Biotechnol. J. 16, 1002–1012 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Xu, Y. et al. Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton. Int. J. Mol. Sci. 20, 1–10 (2019).

    ADS 

    Google Scholar 

  • 21.

    Wan, Q., Zhang, H., Ye, W., Wu, H. & Zhang, T. Genome-wide transcriptome profiling revealed cotton fuzz fiber development having a similar molecular model as Arabidopsis Trichome. PLoS ONE 9, e97313 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Man, W. et al. A Comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium Hirsutum x Gossypium Barbadense Population. Mol. Genet. Genomics. 291, 1749–1767 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Li, X. et al. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics 18, 815 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Yang, L. et al. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep. 24, 237–245 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    John, M. E. & Crow, L. J. Gene expression in cotton (Gossypium Hirsutum L.) fiber: Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA. 89, 5769–5773 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Rinehart, J. A., Petersen, M. W. & John, M. E. Tissue-specific and developmental regulation of cotton gene FbL2A: Demonstration of promoter activity in transgenic plants. Plant Physiol. 112, 1331–1341 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Li, Y. et al. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep. 29, 193–202 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Huang, G. Q. et al. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol. 161, 1278–1290 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Harmer, S. E., Orford, S. J. & Timmis, J. N. Characterisation of six alpha-expansin genes in Gossypium Hirsutum (upland cotton). Mol. Genet. Genomics. 268, 1–9 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Wang, S. et al. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323–2334 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Li, X. B., Fan, X. P., Wang, X. L., Cai, L. & Yang, W. C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17, 859–875 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Kim, H. J. & Triplett, B. A. Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium Hirsutum L.) fibers. Biochim. Biophys. Acta. 1679, 214–221 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Li, X. B., Cai, L., Cheng, N. H. & Liu, J. W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol. 130, 666–674 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Li, A. et al. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium Hirsutum and Gossypium Barbadense. Planta 237, 1585–1597 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Qin, Y. M. & Zhu, Y. X. How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14, 106–111 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Liu, K., Sun, J., Yao, L. & Yuan, Y. Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in ligon lintless-1 mutant. Genomics 100, 42–50 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Huang, G. Q. et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant. 134, 348–359 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Fang, L. et al. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium Barbadense chromosome segments. BMC Genomics 15, 838 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Haigler, C. H., Betancur, L., Stiff, M. R. & Tuttle, J. R. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 3, 104 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Huang, J., Chen, F., Wu, S., Li, J. & Xu, W. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci. China Life Sci. 59, 194–205 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Machado, A., Wu, Y., Yang, Y., Llewellyn, D. J. & Dennis, E. S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 59, 52–62 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Walford, S. A., Wu, Y., Llewellyn, D. J. & Dennis, E. S. GhMYB25-like: A key factor in early cotton fibre development. Plant J. 65, 785–797 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Huang, J. et al. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol. 60, 687–701 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Pu, L., Li, Q., Fan, X., Yang, W. & Xue, Y. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180, 811–820 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Shangguan, X. X., Yang, C. Q., Zhang, X. F. & Wang, L. J. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium Hirsutum). Physiol. Plant. 158, 200–212 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Zhang, J. et al. The cotton (Gossypium Hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 217, 625–640 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Li, W. et al. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium Hirsutum). Sci. Rep. 7, 10118 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Sun, H. et al. Pectate lyase-like gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Sci. 293, 110395 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Deng, T. et al. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci. Rep. 6, 26829 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Zhang, M. et al. Overexpression of GhFIM2 propels cotton fiber development by enhancing actin bundle formation. J. Integr. Plant Biol. 59, 531–534 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Bajwa, K. S. et al. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front. Plant Sci. 6, 838 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Li, S. et al. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. J. Plant Physiol. 233, 58–72 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Demko, V., Ako, E., Perroud, P. F., Quatrano, R. & Olsen, O. A. The phenotype of the CRINKLY4 deletion mutant of physcomitrella patens suggests a broad role in developmental regulation in early land plants. Planta 244, 275–284 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Kamata, N., Okada, H., Komeda, Y. & Takahashi, T. Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis Thaliana. Plant J. 75, 430–440 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Yang, T. et al. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago Truncatula. Plant Mol. Biol. 105, 193–204 (2021).

    PubMed 

    Google Scholar 

  • 56.

    Morii, M. et al. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice. Plant Cell Physiol. 61, 1935–1945 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Califar, B., Sng, N. J., Zupanska, A., Paul, A. L. & Ferl, R. J. Root skewing-associated genes impact the spaceflight response of Arabidopsis Thaliana. Front. Plant Sci. 11, 239 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H. & Hashimoto, T. SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16, 1178–1190 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Tan, H., Creech, R. G., Jenkins, J. N., Chang, Y. F. & Ma, D. P. Cloning and expression analysis of two cotton (Gossypium Hirsutum L.) genes encodingcell wall proline-rich proteins. DNA Seq. 12, 367–380 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Liu, Z. H. et al. Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Mol. Biol. Rep. 40, 4561–4570 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Kim, H. J. & Triplett, B. A. Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218, 516–524 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Lee, J. et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232, 1191–1205 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Sun, H. et al. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium Hirsutum L.). BMC Genomics 19, 661 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Xiao, G. H., Wang, K., Huang, G. & Zhu, Y. X. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin a regulated fiber growth. J. Integr. Plant Biol. 58, 577–589 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Whiteford, N. et al. Swift: Primary data analysis for the illumina solexa sequencing platform. Bioinformatics 25, 2194–2199 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions deletions and gene fusions. Genome Biol. 14, R36 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq Data. Bioinformatics 26, 136–138 (2010).

    PubMed 

    Google Scholar 

  • 70.

    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

    Google Scholar 

  • Source link