Yoo, M. J. & Wendel, J. F. Comparative evolutionary and developmental dynamics of the cotton (Gossypium Hirsutum) fiber transcriptome. PLoS Genet. 10, e1004073 (2014).
Google Scholar
Kim, H. J. & Triplett, B. A. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 1361–1366 (2001).
Google Scholar
McCombie, W. R., McPherson, J. D. & Mardis, E. R. Next-generation sequencing technologies. Cold Spring Harb. Perspect. Med. 9, 1–10 (2019).
Arya, S. K., Dhar, Y. V., Upadhyay, S. K., Asif, M. H. & Verma, P. C. De novo characterization of phenacoccus solenopsis transcriptome and analysis of gene expression profiling during development and hormone biosynthesis. Sci. Rep. 8, 7573 (2018).
Google Scholar
Filichkin, S. A. et al. Genome-wide mapping of alternative splicing in Arabidopsis Thaliana. Genome Res. 20, 45–58 (2010).
Google Scholar
Quesada, T. et al. Comparative analysis of the transcriptomes of Populus Trichocarpa and Arabidopsis Thaliana suggests extensive evolution of gene expression regulation in Angiosperms. New Phytol. 180, 408–420 (2008).
Google Scholar
Severin, A. J. et al. RNA-seq atlas of glycine max: A guide to the Soybean transcriptome. BMC Plant Biol. 10, 160 (2010).
Google Scholar
Fu, C. et al. Transcriptomic analysis reveals new insights into high-temperature-dependent glume-unclosing in an elite rice male sterile line. Front. Plant Sci. 8, 112 (2017).
Google Scholar
Shu, Y., Li, W., Zhao, J., Liu, Y. & Guo, C. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago Ruthenica. Genet. Mol. Biol. 41, 638–648 (2018).
Google Scholar
Zhang, B. et al. A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during anther development of upland cotton carrying cytoplasmic male sterile Gossypium Harknessii (D2) cytoplasm. BMC Plant Biol. 18, 242 (2018).
Google Scholar
Jian, H. et al. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica Napus L. BMC Genomics 20, 21 (2019).
Google Scholar
Odintsova, T. I. et al. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ 7, e6125 (2019).
Google Scholar
Qian, Y., Ren, Q., Zhang, J. & Chen, L. Transcriptomic analysis of the maize (Zea Mays L.) inbred line B73 response to heat stress at the seedling stage. Gene 692, 68–78 (2019).
Google Scholar
Cao, A. et al. Comparative transcriptome analysis of SE initial dedifferentiation in cotton of different SE capability. Sci. Rep. 7, 8583 (2017).
Google Scholar
Parekh, M. J., Kumar, S., Fougat, R. S., Zala, H. N. & Pandit, R. J. Transcriptomic profiling of developing fiber in levant cotton (Gossypium Herbaceum L.). Funct. Integr. Genomics. 18, 211–223 (2018).
Google Scholar
Hamid, R., Marashi, H., Tomar, R. S., Malekzadeh, S. S. & Sabara, P. H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium Hirsutum L.). PLoS ONE 14, e218381 (2019).
Padmalatha, K. V. et al. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol. Biol. 78, 223–246 (2012).
Google Scholar
Li, P. T. et al. Comparative transcriptome analysis of cotton fiber development of upland cotton (Gossypium Hirsutum) and chromosome segment substitution lines from G. Hirsutum x G. Barbadense. BMC Genomics 18, 705 (2017).
Google Scholar
Hu, H. et al. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium Hirsutum L.). Plant Biotechnol. J. 16, 1002–1012 (2018).
Google Scholar
Xu, Y. et al. Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton. Int. J. Mol. Sci. 20, 1–10 (2019).
Google Scholar
Wan, Q., Zhang, H., Ye, W., Wu, H. & Zhang, T. Genome-wide transcriptome profiling revealed cotton fuzz fiber development having a similar molecular model as Arabidopsis Trichome. PLoS ONE 9, e97313 (2014).
Google Scholar
Man, W. et al. A Comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium Hirsutum x Gossypium Barbadense Population. Mol. Genet. Genomics. 291, 1749–1767 (2016).
Google Scholar
Li, X. et al. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics 18, 815 (2017).
Google Scholar
Yang, L. et al. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep. 24, 237–245 (2005).
Google Scholar
John, M. E. & Crow, L. J. Gene expression in cotton (Gossypium Hirsutum L.) fiber: Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA. 89, 5769–5773 (1992).
Google Scholar
Rinehart, J. A., Petersen, M. W. & John, M. E. Tissue-specific and developmental regulation of cotton gene FbL2A: Demonstration of promoter activity in transgenic plants. Plant Physiol. 112, 1331–1341 (1996).
Google Scholar
Li, Y. et al. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep. 29, 193–202 (2010).
Google Scholar
Huang, G. Q. et al. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol. 161, 1278–1290 (2013).
Google Scholar
Harmer, S. E., Orford, S. J. & Timmis, J. N. Characterisation of six alpha-expansin genes in Gossypium Hirsutum (upland cotton). Mol. Genet. Genomics. 268, 1–9 (2002).
Google Scholar
Wang, S. et al. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323–2334 (2004).
Google Scholar
Li, X. B., Fan, X. P., Wang, X. L., Cai, L. & Yang, W. C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17, 859–875 (2005).
Google Scholar
Kim, H. J. & Triplett, B. A. Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium Hirsutum L.) fibers. Biochim. Biophys. Acta. 1679, 214–221 (2004).
Google Scholar
Li, X. B., Cai, L., Cheng, N. H. & Liu, J. W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol. 130, 666–674 (2002).
Google Scholar
Li, A. et al. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium Hirsutum and Gossypium Barbadense. Planta 237, 1585–1597 (2013).
Google Scholar
Qin, Y. M. & Zhu, Y. X. How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 14, 106–111 (2011).
Google Scholar
Liu, K., Sun, J., Yao, L. & Yuan, Y. Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in ligon lintless-1 mutant. Genomics 100, 42–50 (2012).
Google Scholar
Huang, G. Q. et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiol Plant. 134, 348–359 (2008).
Google Scholar
Fang, L. et al. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium Barbadense chromosome segments. BMC Genomics 15, 838 (2014).
Google Scholar
Haigler, C. H., Betancur, L., Stiff, M. R. & Tuttle, J. R. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 3, 104 (2012).
Google Scholar
Huang, J., Chen, F., Wu, S., Li, J. & Xu, W. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci. China Life Sci. 59, 194–205 (2016).
Google Scholar
Machado, A., Wu, Y., Yang, Y., Llewellyn, D. J. & Dennis, E. S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 59, 52–62 (2009).
Google Scholar
Walford, S. A., Wu, Y., Llewellyn, D. J. & Dennis, E. S. GhMYB25-like: A key factor in early cotton fibre development. Plant J. 65, 785–797 (2011).
Google Scholar
Huang, J. et al. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol. 60, 687–701 (2019).
Google Scholar
Pu, L., Li, Q., Fan, X., Yang, W. & Xue, Y. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180, 811–820 (2008).
Google Scholar
Shangguan, X. X., Yang, C. Q., Zhang, X. F. & Wang, L. J. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium Hirsutum). Physiol. Plant. 158, 200–212 (2016).
Google Scholar
Zhang, J. et al. The cotton (Gossypium Hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 217, 625–640 (2018).
Google Scholar
Li, W. et al. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium Hirsutum). Sci. Rep. 7, 10118 (2017).
Google Scholar
Sun, H. et al. Pectate lyase-like gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. Plant Sci. 293, 110395 (2020).
Google Scholar
Deng, T. et al. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci. Rep. 6, 26829 (2016).
Google Scholar
Zhang, M. et al. Overexpression of GhFIM2 propels cotton fiber development by enhancing actin bundle formation. J. Integr. Plant Biol. 59, 531–534 (2017).
Google Scholar
Bajwa, K. S. et al. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front. Plant Sci. 6, 838 (2015).
Google Scholar
Li, S. et al. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar. J. Plant Physiol. 233, 58–72 (2019).
Google Scholar
Demko, V., Ako, E., Perroud, P. F., Quatrano, R. & Olsen, O. A. The phenotype of the CRINKLY4 deletion mutant of physcomitrella patens suggests a broad role in developmental regulation in early land plants. Planta 244, 275–284 (2016).
Google Scholar
Kamata, N., Okada, H., Komeda, Y. & Takahashi, T. Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis Thaliana. Plant J. 75, 430–440 (2013).
Google Scholar
Yang, T. et al. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago Truncatula. Plant Mol. Biol. 105, 193–204 (2021).
Google Scholar
Morii, M. et al. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice. Plant Cell Physiol. 61, 1935–1945 (2020).
Google Scholar
Califar, B., Sng, N. J., Zupanska, A., Paul, A. L. & Ferl, R. J. Root skewing-associated genes impact the spaceflight response of Arabidopsis Thaliana. Front. Plant Sci. 11, 239 (2020).
Google Scholar
Nakajima, K., Furutani, I., Tachimoto, H., Matsubara, H. & Hashimoto, T. SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16, 1178–1190 (2004).
Google Scholar
Tan, H., Creech, R. G., Jenkins, J. N., Chang, Y. F. & Ma, D. P. Cloning and expression analysis of two cotton (Gossypium Hirsutum L.) genes encodingcell wall proline-rich proteins. DNA Seq. 12, 367–380 (2001).
Google Scholar
Liu, Z. H. et al. Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Mol. Biol. Rep. 40, 4561–4570 (2013).
Google Scholar
Kim, H. J. & Triplett, B. A. Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218, 516–524 (2004).
Google Scholar
Lee, J. et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232, 1191–1205 (2010).
Google Scholar
Sun, H. et al. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton (Gossypium Hirsutum L.). BMC Genomics 19, 661 (2018).
Google Scholar
Xiao, G. H., Wang, K., Huang, G. & Zhu, Y. X. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin a regulated fiber growth. J. Integr. Plant Biol. 58, 577–589 (2016).
Google Scholar
Whiteford, N. et al. Swift: Primary data analysis for the illumina solexa sequencing platform. Bioinformatics 25, 2194–2199 (2009).
Google Scholar
Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions deletions and gene fusions. Genome Biol. 14, R36 (2013).
Google Scholar
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
Google Scholar
Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq Data. Bioinformatics 26, 136–138 (2010).
Google Scholar
Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).

