Preloader

Comparative analysis of prophages carried by human and animal-associated Staphylococcus aureus strains spreading across the European regions

  • 1.

    Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46, S350 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Deghorain, M. & van Melderen, L. The Staphylococci phages family: an overview. Viruses 4, 3316–3335 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus : lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Tenover, F. C. et al. Updating molecular diagnostics for detecting methicillin- susceptible and methicillin-resistant staphylococcus aureus isolates in blood culture bottles. J. Clin. Microbiol. 57, e01195-19 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Fitzgerald, J. R. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20, 192–198 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Fluit, A. C. Livestock-associated Staphylococcus aureus. Clin. Microbiol. Infect. 18, 735–744 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Alibayov, B., Baba-Moussa, L., Sina, H., Zdeňková, K. & Demnerová, K. Staphylococcus aureus mobile genetic elements. Mol. Biol. Rep. 41, 5005–5018 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Lindsay, J. A. & Holden, M. T. G. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 6, 186–201 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Malachowa, N. & Deleo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Hacker, J. & Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2, 376–381 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA. 102, 5174–5179 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Xia, G. & Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 21, 593–601 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Betley, M. J. & Mekalanos, J. J. Staphylococcal enterotoxin a is encoded by phage. Science 229, 185–187 (1985).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Botka, T. et al. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes 51, 122–131 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    McCarthy, A. J., Breathnach, A. S. & Lindsay, J. A. Detection of mobile-genetic-element variation between colonizing and infecting hospital-associated methicillin-resistant Staphylococcus aureus isolates. J. Clin. Microbiol. 50, 1073–1075 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    McCarthy, A. J., Witney, A. A. & Lindsay, J. A. Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front. Cell. Infect. Microbiol. 2, 6 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Novick, R. P., Christie, G. E. & Penadés, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ruzin, A., Lindsay, J. & Novick, R. P. Molecular genetics of SaPI1—a mobile pathogenicity island in Ataphylococcus aureus. Mol. Microbiol. 41, 365–377 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Tallent, S. M., Langston, T. B., Moran, R. G. & Christie, G. E. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J. Bacteriol. 189, 7520–7524 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Narita, S. et al. Phage conversion of panton-valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268, 195–206 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    BenZakour, N. L., Guinane, C. M. & Fitzgerald, J. R. Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol. Lett. 289, 1–12 (2008).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Naorem, R. S., Blom, J. & Fekete, C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 9, e10185 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Chua, K. Y. L., Howden, B. P., Jiang, J. H., Stinear, T. & Peleg, A. Y. Population genetics and the evolution of virulence in Staphylococcus aureus. Infect. Genet. Evol. 21, 554–562 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Naorem, R. S., Urban, P., Goswami, G. & Fekete, C. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. 3 Biotech 10, 1–19 (2020).

    Article 

    Google Scholar 

  • 28.

    Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Lee, C. Y. & Iandolo, J. J. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166, 385–391 (1986).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Kala, S. et al. HNH proteins are a widespread component of phage DNA packaging machines. Proc. Natl. Acad. Sci. 111, 6022–6027 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Tenover, F. C. & Gaynes, R. P. The epidemiology of Staphylococcus aureus infections. In Gram-positive pathogens (eds. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A. & Rood, J. I.) 414–421 (ASM Press, 2000).

  • 33.

    Lindsay, J. A. et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J. Bacteriol. 188, 669–676 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Spoor, L. E. et al. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. MBio 4, 356–369 (2013).

    Article 

    Google Scholar 

  • 35.

    Smith, T. C. Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathog. 11, e1004564 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 36.

    Boss, R. et al. Bovine Staphylococcus aureus: subtyping, evolution, and zoonotic transfer. J. Dairy Sci. 99, 515–528 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Springer, B. et al. Methicillin-resistant Staphylococcus aureus:aA new zoonotic agent?. Wien. Klin. Wochenschr. 121, 86–90 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Úbeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA. 99, 6434–6439 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Goerke, C., Koller, J. & Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 171–177 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Guinane, C. M., Penadés, J. R. & Fitzgerald, J. R. The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2, 241–243 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Diene, S. M., Corvaglia, A. R., François, P. & van der Mee-Marquet, N. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genomics 18, 133 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 43.

    Laumay, F. et al. Temperate prophages increase bacterial adhesin expression and virulence in an experimental model of endocarditis due to Staphylococcus aureus from the CC398 lineage. Front. Microbiol. 10, 742 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Pope, W. H. Genetic mosaicism in the tailed dsDNA phages. In Reference Module in Life Sciences (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-809633-8.20961-8.

  • 45.

    Cumby, N., Davidson, A. R. & Maxwell, K. L. The moron comes of age. Bacteriophage 2, e23146 (2012).

    Article 

    Google Scholar 

  • 46.

    De Paepe, M. et al. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet. 10, e1004181 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 47.

    Guttman, B., Raya, R., Kutter, E., Kutter, E. & Sulakvelidze, A. Basic phage biology. In Bacteriophages: Biology and Applications (eds. Kutter, E. & Sulakvelidze, A.) 29–66 (CRC Press, 2005).

  • 48.

    Clokie, M. R. J., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Lucchini, S., Desiere, F. & Brüssow, H. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J. Virol. 73, 8647–8656 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 4, e06416 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Kaneko, J., Kimura, T., Narita, S., Tomita, T. & Yoshiyuki, K. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    van Wamel, W. J. B., Rooijakkers, S. H. M., Ruyken, M., van Kessel, K. P. M. & van Strijp, J. A. G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 53.

    Verkaik, N. J. et al. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin. Microbiol. Infect. 17, 343–348 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3, e00305-11 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 55.

    Resch, G. et al. Human-to-Bovine Jump of Staphylococcus aureus CC8 Is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS ONE 8, e58187 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Nowrouzian, F. L. et al. Impacts of enterotoxin gene cluster-encoded superantigens on local and systemic experimental Staphylococcus aureus infections. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1443–1449 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Reniere, M. L. & Skaar, E. P. Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol. Microbiol. 69, 1304–1315 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Hussain, M. et al. eap gene as novel target for specific Identification of Staphylococcus aureus. J. Clin. Microbiol. 46, 470–476 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Baumler, A. & Fang, F. C. Host specificity of bacterial pathogens. Cold Spring Harb. Perspect. Med. 3, a010041–a010041 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Tang, F., Bossers, A., Harders, F., Lu, C. & Smith, H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics 101, 336–344 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Kaya, H. et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 3, e00612-17 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 65.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    McNair, K., Bailey, B. A. & Edwards, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28, 614–618 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2018).

    Article 
    CAS 

    Google Scholar 

  • 70.

    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Gascuel, O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685–695 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Alcock, B. P. et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 74.

    Morpheus. https://software.broadinstitute.org/morpheus/.

  • 75.

    GView Server. https://server.gview.ca/.

  • 76.

    RStudio_Team. RStudio: Integrated Development for R. (2020).

  • 77.

    Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Markine-Goriaynoff, N. et al. Glycosyltransferases encoded by viruses. J. Gen. Virol. 85, 2741–2754 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link