Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46, S350 (2008).
Google Scholar
Deghorain, M. & van Melderen, L. The Staphylococci phages family: an overview. Viruses 4, 3316–3335 (2012).
Google Scholar
Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus : lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).
Google Scholar
Tenover, F. C. et al. Updating molecular diagnostics for detecting methicillin- susceptible and methicillin-resistant staphylococcus aureus isolates in blood culture bottles. J. Clin. Microbiol. 57, e01195-19 (2019).
Google Scholar
Fitzgerald, J. R. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 20, 192–198 (2012).
Google Scholar
Fluit, A. C. Livestock-associated Staphylococcus aureus. Clin. Microbiol. Infect. 18, 735–744 (2012).
Google Scholar
Alibayov, B., Baba-Moussa, L., Sina, H., Zdeňková, K. & Demnerová, K. Staphylococcus aureus mobile genetic elements. Mol. Biol. Rep. 41, 5005–5018 (2014).
Google Scholar
Lindsay, J. A. & Holden, M. T. G. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 6, 186–201 (2006).
Google Scholar
Malachowa, N. & Deleo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).
Google Scholar
Hacker, J. & Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2, 376–381 (2001).
Google Scholar
Kwan, T., Liu, J., DuBow, M., Gros, P. & Pelletier, J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA. 102, 5174–5179 (2005).
Google Scholar
Xia, G. & Wolz, C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 21, 593–601 (2014).
Google Scholar
Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).
Google Scholar
Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).
Google Scholar
Baba, T. et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827 (2002).
Google Scholar
Betley, M. J. & Mekalanos, J. J. Staphylococcal enterotoxin a is encoded by phage. Science 229, 185–187 (1985).
Google Scholar
Botka, T. et al. Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes 51, 122–131 (2015).
Google Scholar
McCarthy, A. J., Breathnach, A. S. & Lindsay, J. A. Detection of mobile-genetic-element variation between colonizing and infecting hospital-associated methicillin-resistant Staphylococcus aureus isolates. J. Clin. Microbiol. 50, 1073–1075 (2012).
Google Scholar
McCarthy, A. J., Witney, A. A. & Lindsay, J. A. Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front. Cell. Infect. Microbiol. 2, 6 (2012).
Google Scholar
Novick, R. P., Christie, G. E. & Penadés, J. R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 8, 541–551 (2010).
Google Scholar
Ruzin, A., Lindsay, J. & Novick, R. P. Molecular genetics of SaPI1—a mobile pathogenicity island in Ataphylococcus aureus. Mol. Microbiol. 41, 365–377 (2001).
Google Scholar
Tallent, S. M., Langston, T. B., Moran, R. G. & Christie, G. E. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J. Bacteriol. 189, 7520–7524 (2007).
Google Scholar
Narita, S. et al. Phage conversion of panton-valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268, 195–206 (2001).
Google Scholar
BenZakour, N. L., Guinane, C. M. & Fitzgerald, J. R. Pathogenomics of the staphylococci: insights into niche adaptation and the emergence of new virulent strains. FEMS Microbiol. Lett. 289, 1–12 (2008).
Google Scholar
Naorem, R. S., Blom, J. & Fekete, C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 9, e10185 (2021).
Google Scholar
Chua, K. Y. L., Howden, B. P., Jiang, J. H., Stinear, T. & Peleg, A. Y. Population genetics and the evolution of virulence in Staphylococcus aureus. Infect. Genet. Evol. 21, 554–562 (2014).
Google Scholar
Naorem, R. S., Urban, P., Goswami, G. & Fekete, C. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. 3 Biotech 10, 1–19 (2020).
Google Scholar
Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).
Google Scholar
Lee, C. Y. & Iandolo, J. J. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166, 385–391 (1986).
Google Scholar
Kala, S. et al. HNH proteins are a widespread component of phage DNA packaging machines. Proc. Natl. Acad. Sci. 111, 6022–6027 (2014).
Google Scholar
Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).
Google Scholar
Tenover, F. C. & Gaynes, R. P. The epidemiology of Staphylococcus aureus infections. In Gram-positive pathogens (eds. Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A. & Rood, J. I.) 414–421 (ASM Press, 2000).
Lindsay, J. A. et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J. Bacteriol. 188, 669–676 (2006).
Google Scholar
Spoor, L. E. et al. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. MBio 4, 356–369 (2013).
Google Scholar
Smith, T. C. Livestock-associated Staphylococcus aureus: the United States experience. PLoS Pathog. 11, e1004564 (2015).
Google Scholar
Boss, R. et al. Bovine Staphylococcus aureus: subtyping, evolution, and zoonotic transfer. J. Dairy Sci. 99, 515–528 (2016).
Google Scholar
Springer, B. et al. Methicillin-resistant Staphylococcus aureus:aA new zoonotic agent?. Wien. Klin. Wochenschr. 121, 86–90 (2009).
Google Scholar
Úbeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).
Google Scholar
Smith, D. L., Harris, A. D., Johnson, J. A., Silbergeld, E. K. & Morris, J. G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA. 99, 6434–6439 (2002).
Google Scholar
Goerke, C., Koller, J. & Wolz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 171–177 (2006).
Google Scholar
Guinane, C. M., Penadés, J. R. & Fitzgerald, J. R. The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2, 241–243 (2011).
Google Scholar
Diene, S. M., Corvaglia, A. R., François, P. & van der Mee-Marquet, N. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genomics 18, 133 (2017).
Google Scholar
Laumay, F. et al. Temperate prophages increase bacterial adhesin expression and virulence in an experimental model of endocarditis due to Staphylococcus aureus from the CC398 lineage. Front. Microbiol. 10, 742 (2019).
Google Scholar
Pope, W. H. Genetic mosaicism in the tailed dsDNA phages. In Reference Module in Life Sciences (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-809633-8.20961-8.
Cumby, N., Davidson, A. R. & Maxwell, K. L. The moron comes of age. Bacteriophage 2, e23146 (2012).
Google Scholar
De Paepe, M. et al. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet. 10, e1004181 (2014).
Google Scholar
Guttman, B., Raya, R., Kutter, E., Kutter, E. & Sulakvelidze, A. Basic phage biology. In Bacteriophages: Biology and Applications (eds. Kutter, E. & Sulakvelidze, A.) 29–66 (CRC Press, 2005).
Clokie, M. R. J., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).
Google Scholar
Lucchini, S., Desiere, F. & Brüssow, H. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J. Virol. 73, 8647–8656 (1999).
Google Scholar
Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 4, e06416 (2015).
Google Scholar
Kaneko, J., Kimura, T., Narita, S., Tomita, T. & Yoshiyuki, K. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67 (1998).
Google Scholar
van Wamel, W. J. B., Rooijakkers, S. H. M., Ruyken, M., van Kessel, K. P. M. & van Strijp, J. A. G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).
Google Scholar
Verkaik, N. J. et al. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin. Microbiol. Infect. 17, 343–348 (2011).
Google Scholar
Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3, e00305-11 (2012).
Google Scholar
Resch, G. et al. Human-to-Bovine Jump of Staphylococcus aureus CC8 Is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS ONE 8, e58187 (2013).
Google Scholar
Nowrouzian, F. L. et al. Impacts of enterotoxin gene cluster-encoded superantigens on local and systemic experimental Staphylococcus aureus infections. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1443–1449 (2015).
Google Scholar
Reniere, M. L. & Skaar, E. P. Staphylococcus aureus haem oxygenases are differentially regulated by iron and haem. Mol. Microbiol. 69, 1304–1315 (2008).
Google Scholar
Hussain, M. et al. eap gene as novel target for specific Identification of Staphylococcus aureus. J. Clin. Microbiol. 46, 470–476 (2008).
Google Scholar
Baumler, A. & Fang, F. C. Host specificity of bacterial pathogens. Cold Spring Harb. Perspect. Med. 3, a010041–a010041 (2013).
Google Scholar
Tang, F., Bossers, A., Harders, F., Lu, C. & Smith, H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics 101, 336–344 (2013).
Google Scholar
Kaya, H. et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 3, e00612-17 (2018).
Google Scholar
Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).
Google Scholar
Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).
Google Scholar
Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Google Scholar
McNair, K., Bailey, B. A. & Edwards, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28, 614–618 (2012).
Google Scholar
Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
Google Scholar
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Google Scholar
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2018).
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
Google Scholar
Gascuel, O. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685–695 (1997).
Google Scholar
Alcock, B. P. et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).
Google Scholar
Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).
Google Scholar
Morpheus. https://software.broadinstitute.org/morpheus/.
GView Server. https://server.gview.ca/.
RStudio_Team. RStudio: Integrated Development for R. (2020).
Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).
Google Scholar
Markine-Goriaynoff, N. et al. Glycosyltransferases encoded by viruses. J. Gen. Virol. 85, 2741–2754 (2004).
Google Scholar

