Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).
Google Scholar
Stancu, M. C. et al. Mapping and phasing of structural variation in patient genomes using Nanopore sequencing. Nat. Commun. 8, 1326 (2017).
Google Scholar
Jones, D. C., Ruzzo, W. L., Peng, X. & Katze, M. G. Compression of next-generation sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Res. 40, e171 (2012).
Google Scholar
Bonfield, J. K. & Mahoney, M. V. Compression of FASTQ and SAM format sequencing data. PloS ONE 8, e59190 (2013).
Google Scholar
Roguski, Ł. & Deorowicz, S. DSRC 2: industry-oriented compression of FASTQ files. Bioinformatics 30, 2213–2215 (2014).
Google Scholar
Grabowski., S., Deorowicz, S. & Roguski, Ł. Disk-based compression of data from genome sequencing. Bioinformatics 31, 1389–1395 (2015).
Google Scholar
Roguski, Ł., Ochoa, I., Hernaez, M. & Deorowicz, S. FaStore: a space-saving solution for raw sequencing data. Bioinformatics 34, 2748–2756 (2018).
Google Scholar
Liu, Y., Yu, Z., Dinger, M. E. & Li, J. Index suffix–prefix overlaps by (w, k) -minimizer to generate long contigs for reads compression. Bioinformatics 35, 2066–2074 (2018).
Google Scholar
Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M. & Weissman, T. SPRING: a next-generation compressor for FASTQ data. Bioinformatics 35, 2674–2676 (2018).
Google Scholar
Dufort y Álvarez., G. et al. ENANO: encoder for NANOpore FASTQ files. Bioinformatics 36, 4506–4507 (2020).
Google Scholar
Nicolae, M., Pathak, S. & Rajasekaran, S. LFQC: a lossless compression algorithm for FASTQ files. Bioinformatics 31, 3276–3281 (2015).
Google Scholar
Myers, E. The fragment assembly string graph. Bioinformatics 21, 79–85 (2005).
Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32, 2103–2110 (2016).
Google Scholar
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R. & Phillippy, A. M. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
Google Scholar
Dufort y Álvarez., G. et al. RENANO: a REference-based compressor for NANOpore FASTQ files. Bioinformatics 37, 4862–4864 (2021).
Google Scholar
Nurk, S. et al. The complete sequence of a human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445798v1 (2021).
Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
Google Scholar
Zook, J. M. et al. An open resource for accurately benchmarking small variant and reference calls. Nat. Biotechnol. 37, 561–566 (2019).
Google Scholar
Deorowicz, S. FQSqueezer: k-mer-based compression of sequencing data. Sci. Rep. 10, 578 (2020).
Google Scholar
Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).
Google Scholar
Sosić, M. & Sikić, M. Edlib: a C/C++ library for fast, exact sequence alignment using edit distance. Bioinformatics 33, 1394–1395 (2017).
Google Scholar
Vereecke, N. et al. High quality genome assemblies of Mycoplasma bovis using a taxon-specific Bonito basecaller for MinION and Flongle long-read Nanopore sequencing. BMC Bioinformatics 21, 517 (2020).
Google Scholar
Depledge, D. P. et al. Direct RNA sequencing on Nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat. Commun. 10, 754 (2019).
Google Scholar
Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 7, 783–792 (2019).
Google Scholar
Deschamps, S. et al. A chromosome-scale assembly of the sorghum genome using Nanopore sequencing and optical mapping. Nat. Commun. 9, 4844 (2018).
Google Scholar
Kim, K. et al. Long-read, whole-genome shotgun sequence data for five model organisms. Sci. Data 1, 140045 (2014).
Google Scholar
Hon, T. et al. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci. Data 7, 399 (2020).
Google Scholar
Cheng, H., Concepcion, G. T., Feng, X. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Google Scholar
Murigneux, V. et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience 9, giaa146 (2020).
Google Scholar
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
Google Scholar

