Illum, L. Nasal drug delivery—recent developments and future prospects. J. Control Release 161, 254–263 (2012).
Google Scholar
Gomez, D., Martinez, J. A., Hanson, L. R., Frey, W. H. 2nd & Toth, C. C. Intranasal treatment of neurodegenerative diseases and stroke. Front. Biosci. 4, 74–89 (2012).
Zhu, J., Jiang, Y., Xu, G. & Liu, X. Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors. Histol. Histopathol. 27, 537–548 (2012).
Google Scholar
Vitaliano, G. D., Vitaliano, F., Rios, J. D., Renshaw, P. F. & Teicher, M. H. New clathrin-based nanoplatforms for magnetic resonance imaging. PLoS ONE 7, e35821 (2012).
Google Scholar
Brodsky, F. M. Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol. 28, 309–336 (2012).
Google Scholar
Kirchhausen, T., Owen, D. & Harrison, S. C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6, a016725 (2014).
Google Scholar
Preston, J. E., Joan Abbott, N. & Begley, D. J. Transcytosis of macromolecules at the blood-brain barrier. Adv. Pharmacol. 71, 147–163 (2014).
Google Scholar
Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis: the physiological mechanism of vesicle retrieval at hippocampal synapses. J. Physiol. 585, 681–686 (2007).
Google Scholar
Mills, I. G. The interplay between clathrin-coated vesicles and cell signalling. Semin. Cell Dev. Biol. 18, 459–470 (2007).
Google Scholar
Royle, S. J. The cellular functions of clathrin. Cell. Mol. Life Sci. 63, 1823–1832 (2006).
Google Scholar
Baba, T. et al. Clathrin-dependent and clathrin-independent endocytosis are differentially sensitive to insertion of poly (ethylene glycol)-derivatized cholesterol in the plasma membrane. Traffic 2, 501–512 (2001).
Google Scholar
Schmid, S. L., Matsumoto, A. K. & Rothman, J. E. A domain of clathrin that forms coats. Proc. Natl Acad. Sci. USA 79, 91–95 (1982).
Google Scholar
Bartus, R. T. & Johnson, E. M., Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: Where have we been and what have we learned? Neurobiol. Dis. 97, 156–168 (2017).
Lu, B., Nagappan, G., Guan, X., Nathan, P. J. & Wren, P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 401–416 (2013).
Google Scholar
Ghosh, A., Carnahan, J. & Greenberg, M. E. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618–1623 (1994).
Google Scholar
Horch, H. W. & Katz, L. C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184 (2002).
Google Scholar
Zagrebelsky, M. & Korte, M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 76, 628–638 (2014).
Google Scholar
Mattson, M. P., Maudsley, S. & Martin, B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27, 589–594 (2004).
Google Scholar
Leal, G., Afonso, P. M., Salazar, I. L. & Duarte, C. B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 1621, 82–101 (2015).
Google Scholar
Song, M., Martinowich, K. & Lee, F. S. BDNF at the synapse: why location matters. Mol. Psychiatry 22, 1370–1375 (2017).
Google Scholar
Yamada, K., Mizuno, M. & Nabeshima, T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 70, 735–744 (2002).
Google Scholar
Cunha, C., Brambilla, R. & Thomas, K. L. A simple role for BDNF in learning and memory? Front. Mol. Neurosci. 3, 1 (2010).
Google Scholar
Bekinschtein, P., Cammarota, M. & Medina, J. H. BDNF and memory processing. Neuropharmacology 76, 677–683 (2014).
Google Scholar
Andero, R., Choi, D. C. & Ressler, K. J. BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. Prog. Mol. Biol. Transl. Sci. 122, 169–192 (2014).
Google Scholar
Nagahara, A. H. et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 15, 331–337 (2009).
Google Scholar
Nagahara, A. H. & Tuszynski, M. H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219 (2011).
Google Scholar
Poduslo, J. F. & Curran, G. L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280–286 (1996).
Google Scholar
Pardridge, W. M., Kang, Y. S. & Buciak, J. L. Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm. Res. 11, 738–746 (1994).
Google Scholar
Alcala-Barraza, S. R. et al. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target. 18, 179–190 (2010).
Google Scholar
Scharfman, H. et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 192, 348–356 (2005).
Google Scholar
Bekinschtein, P. et al. BDNF is essential to promote persistence of long-term memory storage. Proc. Natl Acad. Sci. USA 105, 2711–2716 (2008).
Google Scholar
Kuipers, S. D. et al. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci. Rep. 6, 21222 (2016).
Google Scholar
Blurton-Jones, M. et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl Acad. Sci. USA 106, 13594–13599 (2009).
Google Scholar
Zhang, W. et al. Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Mol. Neurobiol. 50, 423–437 (2014).
Google Scholar
Ando, S. et al. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J. Neurosci. Res. 70, 519–527 (2002).
Google Scholar
Quesseveur, G. et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry 3, e253 (2013).
Google Scholar
Sirianni, R. W., Olausson, P., Chiu, A. S., Taylor, J. R. & Saltzman, W. M. The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res. 1321, 40–50 (2010).
Google Scholar
Angelov, B. et al. Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano 8, 5216–5226 (2014).
Google Scholar
Chen, H. et al. Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor. Sci. Rep. 6, 28599 (2016).
Google Scholar
Geral, C., Angelova, A. & Lesieur, S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 5, 127–167 (2013).
Google Scholar
Zhang, Y. & Pardridge, W. M. Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res. 1111, 227–229 (2006).
Google Scholar
Khalin, I. et al. Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Deliv. 23, 3520–3528 (2016).
Google Scholar
Jiang, Y. et al. Nanoformulation of brain-derived neurotrophic factor with target receptor-triggered-release in the central nervous system. Adv. Funct. Mater. 28, 1703982 (2018).
Ma, X. C. et al. Intranasal delivery of recombinant AAV containing BDNF fused with HA2TAT: a potential promising therapy strategy for major depressive disorder. Sci. Rep. 6, 22404 (2016).
Google Scholar
Kim, B. O. et al. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am. J. Pathol. 162, 1693–1707 (2003).
Google Scholar
Langford, D. et al. Doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) as an HIV/neuroAIDS model. J. Neurovirol. 24, 168–179 (2018).
Google Scholar
Mocchetti, I., Bachis, A., Campbell, L. A. & Avdoshina, V. Implementing neuronal plasticity in NeuroAIDS: the experience of brain-derived neurotrophic factor and other neurotrophic factors. J. NeuroImmune Pharmacol. 9, 80–91 (2014).
Google Scholar
Bachis, A., Avdoshina, V., Zecca, L., Parsadanian, M. & Mocchetti, I. Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J. Neurosci. 32, 9477–9484 (2012).
Google Scholar
Albrecht, D. et al. Trophic factors in cerebrospinal fluid and spinal cord of patients with tropical spastic paraparesis, HIV, and Creutzfeldt-Jakob disease. AIDS Res. Hum. Retroviruses 22, 248–254 (2006).
Google Scholar
Meeker, R. B., Poulton, W., Markovic-Plese, S., Hall, C. & Robertson, K. Protein changes in CSF of HIV-infected patients: evidence for loss of neuroprotection. J. Neurovirol. 17, 258–273 (2011).
Google Scholar
Fields, J. et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J. Neurosci. 35, 1921–1938 (2015).
Google Scholar
King, J. E., Eugenin, E. A., Buckner, C. M. & Berman, J. W. HIV tat and neurotoxicity. Microbes Infect. 8, 1347–1357 (2006).
Google Scholar
Hudson, L. et al. Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J. Neurovirol. 6, 145–155 (2000).
Google Scholar
Henderson, L. J. et al. Presence of Tat and transactivation response element in spinal fluid despite antiretroviral therapy. Aids 33, S145–S157 (2019).
Google Scholar
Jones, M., Olafson, K., Del Bigio, M. R., Peeling, J. & Nath, A. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J. Neuropathol. Exp. Neurol. 57, 563–570 (1998).
Google Scholar
McLaughlin, J. P. et al. Conditional human immunodeficiency virus transactivator of transcription protein expression induces depression-like effects and oxidative stress. Biol. Psychiatry Cogn Neurosci Neuroimaging 2, 599–609 (2017).
Google Scholar
Carey, A. N. et al. Conditional Tat protein expression in the GT-tg bigenic mouse brain induces gray matter density reductions. Prog. Neuro-Psychopharmacol. 43, 49–54 (2013).
Google Scholar
Rahimian, P. & He, J. J. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J. Neuroinflamm. 13, 247 (2016).
Carey, A. N., Sypek, E. I., Singh, H. D., Kaufman, M. J. & McLaughlin, J. P. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse. Behav. Brain Res. 229, 48–56 (2012).
Google Scholar
Marks, W. D. et al. HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J. Neurovirol. 22, 747–762 (2016).
Google Scholar
Fitting, S. et al. Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol. Psychiatry 73, 443–453 (2013).
Google Scholar
Ramirez, S. H. et al. Neurotrophins prevent HIV Tat-induced neuronal apoptosis via a nuclear factor-kappaB (NF-kappaB)-dependent mechanism. J. Neurochem. 78, 874–889 (2001).
Google Scholar
Fujimura, R. K. et al. HIV-1 proviral DNA load across neuroanatomic regions of individuals with evidence for HIV-1-associated dementia. JAIDS 16, 146–152 (1997).
Google Scholar
Wiley, C. A. et al. Distribution of brain HIV load in AIDS. Brain Pathol. 8, 277–284 (1998).
Google Scholar
Anthony, I. C., Ramage, S. N., Carnie, F. W., Simmonds, P. & Bell, J. E. Influence of HAART on HIV-related CNS disease and neuroinflammation. J. Neuropathol. Exp. Neurol. 64, 529–536 (2005).
Google Scholar
Nir, T. M. et al. Association of immunosuppression and viral load with subcortical brain volume in an International sample of people living With HIV. JAMA Netw. Open 4, e2031190 (2021).
Google Scholar
Ferguson, M. L. et al. Conformation of a clathrin triskelion in solution. Biochemistry 45, 5916–5922 (2006).
Google Scholar
Kocsis, E., Trus, B. L., Steer, C. J., Bisher, M. E. & Steven, A. C. Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107, 6–14 (1991).
Google Scholar
Kirchhausen, T., Harrison, S. C. & Heuser, J. Configuration of clathrin trimers: evidence from electron microscopy. J. Ultrastruct. Mol. Struct. Res. 94, 199–208 (1986).
Google Scholar
Kotova, S. et al. AFM visualization of clathrin triskelia under fluid and in air. FEBS Lett. 584, 44–48 (2010).
Fitting, S. et al. Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am. J. Pathol. 177, 1397–1410 (2010).
Google Scholar
Lee, R., Kermani, P., Teng, K. K. & Hempstead, B. L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).
Google Scholar
Yasuda, M. et al. Robust stimulation of TrkB induces delayed increases in BDNF and Arc mRNA expressions in cultured rat cortical neurons via distinct mechanisms. J. Neurochem. 103, 626–636 (2007).
Google Scholar
Yang, J. et al. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 7, 796–806 (2014).
Google Scholar
Guo, W., Nagappan, G. & Lu, B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev. Neurobiol. 78, 647–659 (2018).
Google Scholar
Panja, D. & Bramham, C. R. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76, 664–676 (2014). Pt C.
Google Scholar
Patterson, S. L. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).
Google Scholar
Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).
Google Scholar
Rossi, C. et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856 (2006).
Google Scholar
Woo, N. H. et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 8, 1069–1077 (2005).
Google Scholar
Teng, H. K. et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463 (2005).
Google Scholar
Barnes, P. & Thomas, K. L. Proteolysis of proBDNF is a key regulator in the formation of memory. PLoS ONE 3, e3248 (2008).
Google Scholar
Qiao, H., An, S. C., Xu, C. & Ma, X. M. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res. 1663, 29–37 (2017).
Google Scholar
Numakawa, T. et al. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 25, 237–258 (2010).
Google Scholar
Brunet, A., Datta, S. R. & Greenberg, M. E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297–305 (2001).
Google Scholar
Yang, J. W. et al. BDNF promotes the growth of human neurons through crosstalk with the Wnt/beta-catenin signaling pathway via GSK-3beta. Neuropeptides 54, 35–46 (2015).
Google Scholar
Green, M. V. & Thayer, S. A. NMDARs adapt to neurotoxic HIV protein Tat downstream of a GluN2A-ubiquitin ligase signaling pathway. J. Neurosci. 36, 12640–12649 (2016).
Google Scholar
Fassnacht, M. et al. AKT is highly phosphorylated in pheochromocytomas but not in benign adrenocortical tumors. J. Clin. Endocrinol. Metab. 90, 4366–4370 (2005).
Google Scholar
Yan, Q. et al. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78, 431–448 (1997).
Google Scholar
Barde, Y. A., Edgar, D. & Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553 (1982).
Google Scholar
Lindholm, D., Carroll, P., Tzimagiorgis, G. & Thoenen, H. Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur. J. Neurosci. 8, 1452–1460 (1996).
Google Scholar
Johnson-Farley, N. N., Travkina, T. & Cowen, D. S. Cumulative activation of akt and consequent inhibition of glycogen synthase kinase-3 by brain-derived neurotrophic factor and insulin-like growth factor-1 in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 316, 1062–1069 (2006).
Google Scholar
Vaka, S. R., Murthy, S. N., Balaji, A. & Repka, M. A. Delivery of brain-derived neurotrophic factor via nose-to-brain pathway. Pharm. Res. 29, 441–447 (2012).
Google Scholar
Zheng, F., Soellner, D., Nunez, J. & Wang, H. The basal level of intracellular calcium gates the activation of phosphoinositide 3-kinase-Akt signaling by brain-derived neurotrophic factor in cortical neurons. J. Neurochem. 106, 1259–1274 (2008).
Google Scholar
Numakawa, T., Odaka, H. & Adachi, N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci. 19, 3650 (2018).
Lian, D. et al. Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis. J. Neuroimmunol. 294, 46–55 (2016).
Google Scholar
Fatima, M. et al. Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death Differ. 23, 776–786 (2016).
Google Scholar
Mishra, M., Taneja, M., Malik, S., Khalique, H. & Seth, P. Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. J. Neurovirol. 16, 355–367 (2010).
Google Scholar
Fan, Y., Gao, X., Chen, J., Liu, Y. & He, J. J. HIV Tat impairs neurogenesis through functioning as a notch ligand and activation of notch signaling pathway. J. Neurosci. 36, 11362–11373 (2016).
Google Scholar
Hill, J. D., Zuluaga-Ramirez, V., Gajghate, S., Winfield, M. & Persidsky, Y. Chronic intrahippocampal infusion of HIV-1 neurotoxic proteins: a novel mouse model of HIV-1 associated inflammation and neural stem cell dysfunction. J. NeuroImmune Pharmacol. 14, 375–382 (2019).
Google Scholar
Coffey, E. T., Akerman, K. E. & Courtney, M. J. Brain derived neurotrophic factor induces a rapid upregulation of synaptophysin and tau proteins via the neurotrophin receptor TrkB in rat cerebellar granule cells. Neurosci. Lett. 227, 177–180 (1997).
Google Scholar
Bamji, S. X., Rico, B., Kimes, N. & Reichardt, L. F. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J. Cell Biol. 174, 289–299 (2006).
Google Scholar
Fukumitsu, H., Ohashi, A., Nitta, A., Nomoto, H. & Furukawa, S. BDNF and NT-3 modulate expression and threonine phosphorylation of microtubule-associated protein 2 analogues, and alter their distribution in the developing rat cerebral cortex. Neurosci. Lett. 238, 107–110 (1997).
Google Scholar
Melo, C. V. et al. Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 237, 66–86 (2013).
Google Scholar
Levine, A. J. et al. Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J. Neurovirol. 22, 431–441 (2016).
Google Scholar
Shin, A. H. & Thayer, S. A. Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures. Mol. Cell. Neurosci. 54, 22–29 (2013).
Google Scholar
Butler, T. R., Smith, K. J., Self, R. L., Braden, B. B. & Prendergast, M. A. Neurodegenerative effects of recombinant HIV-1 Tat(1–86) are associated with inhibition of microtubule formation and oxidative stress-related reductions in microtubule-associated protein-2(a,b). Neurochem. Res. 36, 819–828 (2011).
Google Scholar
Aprea, S. et al. Tubulin-mediated binding of human immunodeficiency virus-1 Tat to the cytoskeleton causes proteasomal-dependent degradation of microtubule-associated protein 2 and neuronal damage. J. Neurosci. 26, 4054–4062 (2006).
Google Scholar
Maragos, W. F. et al. Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience 117, 43–53 (2003).
Google Scholar
LaBel, C. P. & Foss, J. Use of a rodent neurotoxicity screening battery in the preclinical safety assessment of recombinant-methionyl human brain-derived neurotrophic factor. Neurotoxicology 17, 851–864 (1996).
Zhang, L. et al. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer’s disease induced by abeta1–42. PLoS ONE 10, e0122415 (2015).
Google Scholar
Mizuno, M. et al. Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol. Psychiatry 8, 217–224 (2003).
Google Scholar
Schmitt, U., Tanimoto, N., Seeliger, M., Schaeffel, F. & Leube, R. E. Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162, 234–243 (2009).
Google Scholar
Khuchua, Z. et al. Deletion of the N-terminus of murine map2 by gene targeting disrupts hippocampal ca1 neuron architecture and alters contextual memory. Neuroscience 119, 101–111 (2003).
Google Scholar
Dickens, A. M. et al. Chronic low-level expression of HIV-1 Tat promotes a neurodegenerative phenotype with aging. Sci. Rep. 7, 7748 (2017).
Google Scholar
Jaeger, L. B. & Nath, A. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis. Dis. Models Mech. 5, 313–322 (2012).
Google Scholar
Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120 (2020).
Zhu, Y., Drake, M. T. & Kornfeld, S. Adaptor protein 1-dependent clathrin coat assembly on synthetic liposomes and Golgi membranes. Methods Enzymol. 329, 379–387 (2001).
Google Scholar
Soderquist, R. G. et al. PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution. J. Biomed. Mater. Res. Part A 91, 719–729 (2009).
Sakane, T. & Pardridge, W. M. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm. Res. 14, 1085–1091 (1997).
Google Scholar
Hahn, Y. K. et al. Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Struct. Funct. 220, 605–623 (2013).
Boado, R. J., Zhang, Y., Zhang, Y. & Pardridge, W. M. Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood-brain barrier. Biotechnol. Bioeng. 97, 1376–1386 (2007).
Google Scholar
Kummer, U. Tritium radiolabeling of antibodies to high specific activity with N-succinimidyl [2,3-3H]propionate: use in detecting and analyzing monoclonal antibodies. Methods Enzymol. 121, 670–678 (1986).
Google Scholar
Chartoff, E. H., Mague, S. D., Barhight, M. F., Smith, A. M. & Carlezon, W. A. Jr. Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal. J. Neurosci. 26, 6450–6457 (2006).
Google Scholar
Dingwall, C. et al. Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc. Natl Acad. Sci. USA 86, 6925–6929 (1989).
Google Scholar
Snyder, J. S. et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J. Neurosci.29, 14484–14495 (2009).
Google Scholar
Wojtowicz, J. M. & Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 1, 1399–1405 (2006).
Google Scholar
Scholzen, T. & Gerdes, J. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182, 311–322 (2000).
Google Scholar
Couillard-Despres, S. et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21, 1–14 (2005).
Google Scholar
Knaus, P., Betz, H. & Rehm, H. Expression of synaptophysin during postnatal development of the mouse brain. J. Neurochem. 47, 1302–1304 (1986).
Google Scholar
Caceres, A., Banker, G. A. & Binder, L. Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosci. 6, 714–722 (1986).
Google Scholar
Antunes, M. & Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110 (2012).
Google Scholar
Akaike, H., Parzen, E., Tanabe, K. & Kitagawa, G. Selected Papers of Hirotugu Akaike, (Springer, 1998).

