Preloader

Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis

  • 1.

    Yan, N. et al. Morphological characteristics, nutrients, and bioactive compounds of Zizania latifolia, and health benefits of its seeds. Molecules 23, 1561 (2018).

    PubMed Central 

    Google Scholar 

  • 2.

    Yan, N. et al. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem. 275, 618–627 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Yu, X. et al. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem. 331, 127293 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Zhai, C. K., Tang, W. L., Jang, X. L. & Lorenz, K. J. Studies of the safety of Chinese wild rice. Food Chem. Toxicol. 34, 347–352 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Chu, M. J. et al. Partial purification, identification, and quantitation of antioxidants from wild rice (Zizania latifolia). Molecules 23, 2782 (2018).

    PubMed Central 

    Google Scholar 

  • 6.

    Chu, M. J. et al. Extraction of proanthocyanidins from Chinese wild rice (Zizania latifolia) and analyses of structural composition and potential bioactivities of different fractions. Molecules 24, 1681 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Yu, X. et al. Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Food Chem. 344, 128600 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Li, J. et al. Transcriptome analysis reveals the symbiotic mechanism of Ustilago esculenta-induced gall formation of Zizania latifolia. Mol. Plant Microbe . 34, 168–185 (2021).

    CAS 

    Google Scholar 

  • 9.

    Wang, Z. D. et al. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. Plant Mol. Biol. 95, 533–547 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Wang, Z. H. et al. Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microb. Pathogenesis 143, 104107 (2020).

    CAS 

    Google Scholar 

  • 11.

    Ye, C. Y. & Fan, L. Orphan crops and their wild relatives in the genomic era. Mol. Plant 14, 27–39 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Wang, M. et al. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia. Int. J. Biol. Macromol. 107, 882–890 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Yang, Z., Davy, A. J., Liu, X., Yuan, S. & Wang, H. Responses of an emergent macrophyte, Zizania latifolia, to water-level changes in lakes with contrasting hydrological management. Ecol. Eng. 151, 105814 (2020).

    Google Scholar 

  • 14.

    Xu, X. W. et al. Phylogeny and biogeography of the eastern Asian–North American disjunct wild-rice genus (Zizania L., Poaceae). Mol. Phylogenet. Evol. 55, 1008–1017 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Xu, X. W. et al. Comparative phylogeography of the wild-rice genus Zizania (Poaceae) in eastern Asia and North America. Am. J. Bot. 102, 239–247 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Mao, L. et al. RiceRelativesGD: a genomic database of rice relatives for rice research. Database 2019, baz110 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Dong, Z. Y. et al. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor. Appl. Genet. 113, 196–205 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Shan, X. et al. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol. Biol. Evol. 22, 976–990 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Wang, N. et al. Transpositional reactivation of the Dart transposon family in rice lines derived from introgressive hybridization with Zizania latifolia. BMC Plant Biol. 10, 190 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Chen, Q., Li, W., Tan, L. & Tian, F. Harnessing knowledge from maize and rice domestication for new crop breeding. Mol. Plant 14, 9–26 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156–1170 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Kennard, W., Phillips, R. & Porter, R. Genetic dissection of seed shattering, agronomic, and color traits in American wildrice (Zizania palustris var. interior L.) with a comparative map. Theor. Appl. Genet. 105, 1075–1086 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Guo, L. et al. Genomic clues for crop—weed interactions and evolution. Trends Plant Sci. 23, 1102–1115 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Kitaoka, N. et al. Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. Plant Cell 33, 290–305 (2021).

    PubMed 

    Google Scholar 

  • 26.

    Swaminathan, S., Morrone, D., Wang, Q., Fulton, D. B. & Peters, R. J. CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21, 3315–3325 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Shimura, K. et al. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282, 34013–34018 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Hasegawa, M. et al. Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant Microbe. 23, 1000–1011 (2010).

    CAS 

    Google Scholar 

  • 29.

    Mennan, H. et al. Quantification of momilactone B in rice hulls and the phytotoxic potential of rice extracts on the seed germination of Alisma plantago-aquatica. Weed Biol. Manag. 12, 29–39 (2012).

    CAS 

    Google Scholar 

  • 30.

    Kato-noguchi, H. & Peters, R. J. The role of momilactones in rice allelopathy. J. Chem. Ecol. 39, 175–185 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Guo, L. et al. A host plant genome (Zizania latifolia) after a century‐long endophyte infection. Plant J. 83, 600–609 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126–e126 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Du, H. et al. Sequencing and de novo assembly of a near complete indica rice genome. Nat. Commun. 8, 15324 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Haas, M. W. et al. Whole-genome assembly and annotation of northern wild rice, Zizania palustris L., supports a whole-genome duplication in the Zizania genus. Plant J. 107, 1802–1818 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Paterson, A. H., Bowers, J. E. & Chapman, B. A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. P. Natl Acad. Sci. Usa. 101, 9903–9908 (2004).

    CAS 

    Google Scholar 

  • 38.

    Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 10, 725–732 (2009).

    PubMed 

    Google Scholar 

  • 39.

    Kennard, W. C., Phillips, R. L., Porter, R. A. & Grombacher, A. W. A comparative map of wild rice (Zizania palustris L. 2n= 2x= 30). Theor. Appl. Genet. 101, 677–684 (2000).

    CAS 

    Google Scholar 

  • 40.

    Hass, B. L., Pires, J. C., Porter, R., Phillips, R. L. & Jackson, S. A. Comparative genetics at the gene and chromosome levels between rice (Oryza sativa) and wildrice (Zizania palustris). Theor. Appl. Genet. 107, 773–782 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Estornell, L. H., Agustí, J., Merelo, P., Talón, M. & Tadeo, F. R. Elucidating mechanisms underlying organ abscission. Plant Sci. 199, 48–60 (2013).

    PubMed 

    Google Scholar 

  • 42.

    Fernie, A. R. & Yan, J. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615–631 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Zhang, Y., Pribil, M., Palmgren, M. & Gao, C. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200–205 (2020).

    Google Scholar 

  • 44.

    Miyamoto, K. et al. Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. Plant J. 87, 293–304 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Bruce, J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Google Scholar 

  • 48.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Google Scholar 

  • 49.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Hoede, C. et al. PASTEC: an automatic transposable element classification tool. PLoS ONE 9, e91929 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Tarailo‐Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. 25, 4.10.1–4.10.14 (2009).

    Google Scholar 

  • 56.

    Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Boil. 268, 78–94 (1997).

    CAS 

    Google Scholar 

  • 59.

    Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).

    PubMed 

    Google Scholar 

  • 60.

    Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinforma. 18, 4.3.1–4.3.28 (2007).

    Google Scholar 

  • 62.

    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).

    Google Scholar 

  • 63.

    Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89–e89 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Keilwagen, J., Hartung, F., Paulini, M., Twardziok, S. O. & Grau, J. Combining RNA-seq data and homology-based gene prediction for plants, animals and fungi. BMC Bioinforma. 19, 189 (2018).

    Google Scholar 

  • 65.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78–e78 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. & Buell, C. R. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7, 327 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    She, R., Chu, J. S. C., Wang, K., Pei, J. & Chen, N. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Birney, E. et al. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Boil. 215, 403–410 (1990).

    CAS 

    Google Scholar 

  • 75.

    Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Dimmer, E. C. et al. The UniProt-GO annotation database in 2011. Nucleic Acids Res. 40, D565–D570 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    CAS 

    Google Scholar 

  • 82.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS 

    Google Scholar 

  • 87.

    Puttick, M. N. MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35, 5321–5322 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 

    Google Scholar 

  • 90.

    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Zwaenepoel, A. & Van de Peer, Y. wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35, 2153–2155 (2019).

    CAS 

    Google Scholar 

  • 92.

    Yan, N. et al. RNA sequencing provides insights into the regulation of solanesol biosynthesis in Nicotiana tabacum induced by moderately high temperature. Biomolecules 8, 165 (2018).

    PubMed Central 

    Google Scholar 

  • 93.

    Mao, X., Cai, T., Olyarchuk, J. G. & Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Wei, T. et al. Package ‘corrplot’. Statistician 56, 316–324 (2017).

    Google Scholar 

  • Source link